49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetes mellitus is a common metabolic disorder characterized by dysfunction of insulin-secreting pancreatic beta-cells. MicroRNAs are important regulators of beta-cell activities. These non-coding RNAs have recently been discovered to exert their effects not only inside the cell producing them but, upon exosome-mediated transfer, also in other recipient cells. This novel communication mode remains unexplored in pancreatic beta-cells. In the present study, the microRNA content of exosomes released by beta-cells in physiological and physiopathological conditions was analyzed and the biological impact of their transfer to recipient cells investigated.

          Results

          Exosomes were isolated from the culture media of MIN6B1 and INS-1 derived 832/13 beta-cell lines and from mice, rat or human islets. Global profiling revealed that the microRNAs released in MIN6B1 exosomes do not simply reflect the content of the cells of origin. Indeed, while a subset of microRNAs was preferentially released in exosomes others were selectively retained in the cells. Moreover, exposure of MIN6B1 cells to inflammatory cytokines changed the release of several microRNAs. The dynamics of microRNA secretion and their potential transfer to recipient cells were next investigated. As a proof-of-concept, we demonstrate that if cel-miR-238, a C. Elegans microRNA not present in mammalian cells, is expressed in MIN6B1 cells a fraction of it is released in exosomes and is transferred to recipient beta-cells. Furthermore, incubation of untreated MIN6B1 or mice islet cells in the presence of microRNA-containing exosomes isolated from the culture media of cytokine-treated MIN6B1 cells triggers apoptosis of recipient cells. In contrast, exosomes originating from cells not exposed to cytokines have no impact on cell survival. Apoptosis induced by exosomes produced by cytokine-treated cells was prevented by down-regulation of the microRNA-mediating silencing protein Ago2 in recipient cells, suggesting that the effect is mediated by the non-coding RNAs.

          Conclusions

          Taken together, our results suggest that beta-cells secrete microRNAs that can be transferred to neighboring beta-cells. Exposure of donor cells to pathophysiological conditions commonly associated with diabetes modifies the release of microRNAs and affects survival of recipient beta-cells. Our results support the concept that exosomal microRNAs transfer constitutes a novel cell-to-cell communication mechanism regulating the activity of pancreatic beta-cells.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12964-015-0097-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells.

          MicroRNA (miRNA) transfer via exosomes may mediate cell-to-cell communication. Interestingly, specific miRNAs are enriched in exosomes in a cell-type-dependent fashion. However, the mechanisms whereby miRNAs are sorted to exosomes and the significance of miRNA transfer to acceptor cells are unclear. We used macrophages and endothelial cells (ECs) as a model of heterotypic cell communication in order to investigate both processes. RNA profiling of macrophages and their exosomes shows that miRNA sorting to exosomes is modulated by cell-activation-dependent changes of miRNA target levels in the producer cells. Genetically perturbing the expression of individual miRNAs or their targeted transcripts promotes bidirectional miRNA relocation from the cell cytoplasm/P bodies (sites of miRNA activity) to multivesicular bodies (sites of exosome biogenesis) and controls miRNA sorting to exosomes. Furthermore, the use of Dicer-deficient cells and reporter lentiviral vectors (LVs) for miRNA activity shows that exosomal miRNAs are transferred from macrophages to ECs to detectably repress targeted sequences. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A choice of death--the signal-transduction of immune-mediated beta-cell apoptosis.

            Apoptosis is likely to be the main form of beta-cell death in immune-mediated diabetes mellitus in rodents and possibly in humans. Clarification of the regulation of beta-cell death could indicate novel sites for therapeutic intervention in Type I (insulin-dependent) diabetes mellitus. We review the molecular effectors and signal transduction of immune-mediated beta-cell apoptosis. Data obtained on non-obese diabetic (NOD) mice suggest that macrophages and CD4+ T-cells are the main cellular effectors, whereas CD8+ T-cells are more important initiators of the immune process leading to beta-cell death. Perforin could be the effector molecule utilized by CD8+ T-cell initiation, whereas CD4+ mediated beta-cell destruction is mostly dependent on Fas/FasL and the cytokines IFNgamma and TNF-alpha. The macrophage cytokine IL-1beta in combination with IFN-gamma and TNF-alpha, plays an important role for beta-cell dysfunction and death. Signal transduction by these cytokines involves: (i) binding to specific receptors, (ii) signal transduction by cytosolic kinases (especially the so-called mitogen- and stress-activated protein kinases) and/or phosphatases, (iii) mobilization of diverse transcription factors - with nuclear factor kappaB (NF-kappaB), AP-1 and STAT-1 probably playing key roles for beta-cell apoptosis; (iv) up-regulation or down-regulation of gene transcription. Recent data obtained by microarray and proteomic analysis suggest that the process of beta-cell apoptosis depends on the parallel and/or sequential up-regulation and down-regulation of considerable numbers of genes, which can be grouped in gene modules or patterns according to their functions. A detailed characterization of these "gene modules", and of the signalling pathways and transcription factors regulating them could allow us to understand the ultimate mechanisms leading to beta-cell apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Isolation and Characterization of RNA-Containing Exosomes

              The field of exosome research is rapidly expanding, with a dramatic increase in publications in recent years. These small vesicles (30-100 nm) of endocytic origin were first proposed to function as a way for reticulocytes to eradicate the transferrin receptor while maturing into erythrocytes1, and were later named exosomes. Exosomes are formed by inward budding of late endosomes, producing multivesicular bodies (MVBs), and are released into the environment by fusion of the MVBs with the plasma membrane2. Since the first discovery of exosomes, a wide range of cells have been shown to release these vesicles. Exosomes have also been detected in several biological fluids, including plasma, nasal lavage fluid, saliva and breast milk3-6. Furthermore, it has been demonstrated that the content and function of exosomes depends on the originating cell and the conditions under which they are produced. A variety of functions have been demonstrated for exosomes, such as induction of tolerance against allergen7,8, eradication of established tumors in mice9, inhibition and activation of natural killer cells10-12, promotion of differentiation into T regulatory cells13, stimulation of T cell proliferation14 and induction of T cell apoptosis15. Year 2007 we demonstrated that exosomes released from mast cells contain messenger RNA (mRNA) and microRNA (miRNA), and that the RNA can be shuttled from one cell to another via exosomes. In the recipient cells, the mRNA shuttled by exosomes was shown to be translated into protein, suggesting a regulatory function of the transferred RNA16. Further, we have also shown that exosomes derived from cells grown under oxidative stress can induce tolerance against further stress in recipient cells and thus suggest a biological function of the exosomal shuttle RNA17. Cell culture media and biological fluids contain a mixture of vesicles and shed fragments. A high quality isolation method for exosomes, followed by characterization and identification of the exosomes and their content, is therefore crucial to distinguish exosomes from other vesicles and particles. Here, we present a method for the isolation of exosomes from both cell culture medium and body fluids. This isolation method is based on repeated centrifugation and filtration steps, followed by a final ultracentrifugation step in which the exosomes are pelleted. Important methods to identify the exosomes and characterize the exosomal morphology and protein content are highlighted, including electron microscopy, flow cytometry and Western blot. The purification of the total exosomal RNA is based on spin column chromatography and the exosomal RNA yield and size distribution is analyzed using a Bioanalyzer.
                Bookmark

                Author and article information

                Contributors
                claudiane.guay@unil.ch
                veronique.menoud@unil.ch
                sophie.rome@univ-lyon1.fr
                romano.regazzi@unil.ch
                Journal
                Cell Commun Signal
                Cell Commun. Signal
                Cell Communication and Signaling : CCS
                BioMed Central (London )
                1478-811X
                19 March 2015
                19 March 2015
                2015
                : 13
                : 17
                Affiliations
                [ ]Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne, Switzerland
                [ ]CarMeN Laboratory (INSERM U.1060/INRA 1397, INSA), University of Lyon, Faculty of Medicine Lyon-Sud, Ouillons, France
                Article
                97
                10.1186/s12964-015-0097-7
                4371845
                25880779
                bacfd45e-b218-44f2-b8d6-6998cbfa8f34
                © Guay et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 31 October 2014
                : 6 March 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Cell biology
                exosomes,micrornas,pancreatic beta-cells,cell-to-cell communication,diabetes
                Cell biology
                exosomes, micrornas, pancreatic beta-cells, cell-to-cell communication, diabetes

                Comments

                Comment on this article