Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prenatal Alcohol Exposure: Profiling Developmental DNA Methylation Patterns in Central and Peripheral Tissues

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Prenatal alcohol exposure (PAE) can alter the development of neurobiological systems, leading to lasting neuroendocrine, neuroimmune, and neurobehavioral deficits. Although the etiology of this reprogramming remains unknown, emerging evidence suggests DNA methylation as a potential mediator and biomarker for the effects of PAE due to its responsiveness to environmental cues and relative stability over time. Here, we utilized a rat model of PAE to examine the DNA methylation profiles of rat hypothalami and leukocytes at four time points during early development to assess the genome-wide impact of PAE on the epigenome and identify potential biomarkers of PAE. Our model of PAE resulted in blood alcohol levels of ~80–150 mg/dl throughout the equivalent of the first two trimesters of human pregnancy. Hypothalami were analyzed on postnatal days (P) 1, 8, 15, 22 and leukocytes at P22 to compare central and peripheral markers. Genome-wide DNA methylation analysis was performed by methylated DNA immunoprecipitation followed by next-generation sequencing.

          Results: PAE resulted in lasting changes to DNA methylation profiles across all four ages, with 118 differentially methylated regions (DMRs) displaying persistent alterations across the developmental period at a false-discovery rate (FDR) < 0.05. In addition, 299 DMRs showed the same direction of change in the hypothalamus and leukocytes of P22 pups at an FDR < 0.05, with some genes overlapping with the developmental profile findings. The majority of these DMRs were located in intergenic regions, which contained several computationally-predicted transcription factor binding sites. Differentially methylated genes were generally involved in immune function, epigenetic remodeling, metabolism, and hormonal signaling, as determined by gene ontology analyses.

          Conclusions: Persistent DNA methylation changes in the hypothalamus may be associated with the long-term physiological and neurobehavioral alterations in observed in PAE. Furthermore, correlations between epigenetic alterations in peripheral tissues and those in the brain will provide a foundation for the development of biomarkers of fetal alcohol spectrum disorder (FASD). Finally, findings from studies of PAE provide important insight into the etiology of neurodevelopmental and mental health disorders, as they share numerous phenotypes and comorbidities.

          Related collections

          Most cited references 113

          • Record: found
          • Abstract: found
          • Article: not found

          Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters

          While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear 1–5 . In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences 5–10 . Tissue-specific intragenic methylation might reduce, 3 or, paradoxically, enhance transcription elongation efficiency 1,2,4,5 . Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes 11–15 . To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters 16 . The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus 17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of DNA methylation in mammalian epigenetics.

            Genes constitute only a small proportion of the total mammalian genome, and the precise control of their expression in the presence of an overwhelming background of noncoding DNA presents a substantial problem for their regulation. Noncoding DNA, containing introns, repetitive elements, and potentially active transposable elements, requires effective mechanisms for its long-term silencing. Mammals appear to have taken advantage of the possibilities afforded by cytosine methylation to provide a heritable mechanism for altering DNA-protein interactions to assist in such silencing. Genes can be transcribed from methylation-free promoters even though adjacent transcribed and nontranscribed regions are extensively methylated. Gene promoters can be used and regulated while keeping noncoding DNA, including transposable elements, suppressed. Methylation is also used for long-term epigenetic silencing of X-linked and imprinted genes and can either increase or decrease the level of transcription, depending on whether the methylation inactivates a positive or negative regulatory element.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenome-wide association studies for common human diseases.

              Despite the success of genome-wide association studies (GWASs) in identifying loci associated with common diseases, a substantial proportion of the causality remains unexplained. Recent advances in genomic technologies have placed us in a position to initiate large-scale studies of human disease-associated epigenetic variation, specifically variation in DNA methylation. Such epigenome-wide association studies (EWASs) present novel opportunities but also create new challenges that are not encountered in GWASs. We discuss EWAS design, cohort and sample selections, statistical significance and power, confounding factors and follow-up studies. We also discuss how integration of EWASs with GWASs can help to dissect complex GWAS haplotypes for functional analysis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                04 December 2018
                2018
                : 9
                Affiliations
                1Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia , Vancouver, BC, Canada
                2Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia , Vancouver, BC, Canada
                3Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia , Vancouver, BC, Canada
                4Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency Research Centre, BC Cancer Agency , Vancouver, BC, Canada
                5Human Early Learning Partnership, University of British Columbia , Vancouver, BC, Canada
                Author notes

                Edited by: Mojgan Rastegar, University of Manitoba, Canada

                Reviewed by: Kazuhiko Nakabayashi, National Center for Child Health and Development (NCCHD), Japan; Jeffrey Mark Craig, Murdoch Childrens Research Institute, Australia; Tomas J. Ekstrom, Karolinska Institutet (KI), Sweden

                *Correspondence: Alexandre A. Lussier alussier@ 123456cmmt.ubc.ca

                This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics

                †Present Address: Alexandre A. Lussier, Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States

                ‡These authors have contributed equally to this work and are senior authors

                Article
                10.3389/fgene.2018.00610
                6290329
                Copyright © 2018 Lussier, Bodnar, Mingay, Morin, Hirst, Kobor and Weinberg.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 150, Pages: 22, Words: 17933
                Funding
                Funded by: National Institute on Alcohol Abuse and Alcoholism 10.13039/100000027
                Categories
                Genetics
                Original Research

                Comments

                Comment on this article