18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in Hematological, Biochemical and Non-specific Immune Parameters of Olive Flounder, Paralichthys olivaceus, Following Starvation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triplicate groups of fed and starved olive flounder, Paralichthys olivaceus (body weight: 119.8±17.46 g), were examined over 42 days for physiological changes using hematological, biochemical, and non-specific immune parameters. No significant differences in concentrations of blood hemoglobin and hematocrit and plasma levels of total cholesterol, aspartate aminotransferase, alanine aminotransferase, glucose, and cortisol were detected between fed and starved groups at any sampling time throughout the experiment. In contrast, plasma total protein concentrations were significantly lower in starved fish than in fed fish from day 7 onwards. Moreover, plasma lysozyme concentrations were significantly higher in starved flounder from day 21 onwards. This result confirms that the response of olive flounder to short-term (less than about 1.5 months) starvation consists of a readjustment of metabolism rather than the activation of an alarm-stress response. The present results indicate that starvation does not significantly compromise the health status of fish despite food limitation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          A RAPID AND SENSITIVE ASSAY OF MURAMIDASE.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo).

            Growth, haematological (haematocrit), biochemical (serum cortisol and glucose), and non-specific immune (lysozyme, serum haemolytic and haemagglutinating activities, extracellular respiratory burst activity) parameters, were monitored in European sea bass Dicentrarchus labrax and blackspot sea bream Pagellus bogaraveo subjected to a 31 days starvation compared to fed fish, to assess the responses to feed deprivation of these health status indicators. While haematocrit, serum cortisol, glucose and haemolytic activity of both species did not undergo significant variation following starvation, probably due to the short period applied, some non-specific immune parameters were affected significantly. In the starved sea bass, mucus lysozyme content doubled (1.8 U/mL) compared to the initial value. Haemagglutinating activity was significantly lower in starved sea bass than in fed fish after 31 days. In blackspot sea bream, a slight, not significant, reduction in haemagglutinating activity occurred 11 days after starvation. Respiratory burst activity decreased significantly in the starved fish. In spite of the limited number of examined parameters, the opportunity to use a panel of several indicators to obtain a more complete picture of health status in fish was underlined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (insulin, insulin-like growth factor-I, and thyroxine) of coho salmon, Oncorhynchus kisutch.

              The objective of this study was to examine the effect of winter feeding and fasting at both high (10 degrees ) and low (2.5 degrees ) temperatures on growth, metabolic stores, and endocrinology of coho salmon. Treatments were as follows: warm-fed, warm-not fed, cold-fed, and cold-not fed during the winter (January-February). The following parameters were measured: length, weight, whole body lipid, liver glycogen, hepatosomatic index, and plasma levels of insulin, insulin-like growth factor-I (IGF-I), and thyroxine (T4). Warm-fed fish grew continuously throughout the experiment from 21.5 +/- 0.3 to 43.4 +/- 1.4 g and were larger than fish in the other treatments. Fish in all other treatments grew from 21.5 +/- 0.3 to approximately 32 g and showed depressed growth during January and February. During the winter, liver glycogen, hepatosomatic index, plasma insulin, and IGF-I were highly influenced by manipulations in rearing conditions, whereas whole body lipid and plasma T4 were less affected. Plasma insulin levels fluctuated dramatically (from 2 to 7 ng/ml) in the two cold-acclimated groups shortly after the change in temperature. In general, the plasma insulin levels of the warm-fed fish were the highest (8-9 ng/ml), those of the warm-not fed fish were the lowest (2-5 ng/ml), and those of the two cold-acclimated groups were more variable but intermediate. In contrast, plasma IGF-I levels showed a decline with temperature decrease (from 9 to 5 ng/ml) and more gradual changes than insulin with the change in feeding. The highest plasma IGF-I levels were found in the warm-fed fish (10-15 ng/ml), the lowest levels were in the cold-not fed fish (4-5 ng/ml), and those of the warm-not fed and cold-fed fish were intermediate. During the treatment period the T4 levels were relatively unaffected by manipulations in feeding and temperature compared with either insulin or IGF-I. These data suggest that the insulin, IGF-I, and thyroid axes are differentially regulated under changing seasonal and/or environmental conditions in yearling salmon. Copyright 2001 Academic Press.
                Bookmark

                Author and article information

                Journal
                Asian-Australas J Anim Sci
                Asian-australas. J. Anim. Sci
                Asian-Australasian Journal of Animal Sciences
                Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
                1011-2367
                1976-5517
                September 2014
                : 27
                : 9
                : 1360-1367
                Affiliations
                [1 ]Southwest Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Yeosu 556-823, Korea.
                Author notes
                [* ]Corresponding Author: Jong-Hyun Kim. Tel: +82-51-720-2820, Fax: +82-51-720-2828, E-mail: johnkim@ 123456korea.kr

                Aquaculture Research Institute, National Fisheries Research and Development Institute, Busan 619-705, Korea

                Article
                ajas-27-9-1360
                10.5713/ajas.2014.14110
                4150204
                bad9289f-cbc2-4a44-b181-e58ebadc1771
                Copyright © 2014 by Asian-Australasian Journal of Animal Sciences

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 February 2014
                : 12 April 2014
                : 24 April 2014
                Categories
                Article

                olive flounder,paralichthys olivaceus,growth,hematological response,biochemical response,lysozyme activity,food deprivation

                Comments

                Comment on this article