Blog
About

38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human contribution to the European heatwave of 2003.

      1 , ,

      Nature

      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The summer of 2003 was probably the hottest in Europe since at latest ad 1500, and unusually large numbers of heat-related deaths were reported in France, Germany and Italy. It is an ill-posed question whether the 2003 heatwave was caused, in a simple deterministic sense, by a modification of the external influences on climate--for example, increasing concentrations of greenhouse gases in the atmosphere--because almost any such weather event might have occurred by chance in an unmodified climate. However, it is possible to estimate by how much human activities may have increased the risk of the occurrence of such a heatwave. Here we use this conceptual framework to estimate the contribution of human-induced increases in atmospheric concentrations of greenhouse gases and other pollutants to the risk of the occurrence of unusually high mean summer temperatures throughout a large region of continental Europe. Using a threshold for mean summer temperature that was exceeded in 2003, but in no other year since the start of the instrumental record in 1851, we estimate it is very likely (confidence level >90%) that human influence has at least doubled the risk of a heatwave exceeding this threshold magnitude.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: not found
          • Book: not found

          An Introduction to Statistical Modeling of Extreme Values

           Stuart Coles (2001)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of increasing temperature variability in European summer heatwaves.

            Instrumental observations and reconstructions of global and hemispheric temperature evolution reveal a pronounced warming during the past approximately 150 years. One expression of this warming is the observed increase in the occurrence of heatwaves. Conceptually this increase is understood as a shift of the statistical distribution towards warmer temperatures, while changes in the width of the distribution are often considered small. Here we show that this framework fails to explain the record-breaking central European summer temperatures in 2003, although it is consistent with observations from previous years. We find that an event like that of summer 2003 is statistically extremely unlikely, even when the observed warming is taken into account. We propose that a regime with an increased variability of temperatures (in addition to increases in mean temperature) may be able to account for summer 2003. To test this proposal, we simulate possible future European climate with a regional climate model in a scenario with increased atmospheric greenhouse-gas concentrations, and find that temperature variability increases by up to 100%, with maximum changes in central and eastern Europe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantification of modelling uncertainties in a large ensemble of climate change simulations.

              Comprehensive global climate models are the only tools that account for the complex set of processes which will determine future climate change at both a global and regional level. Planners are typically faced with a wide range of predicted changes from different models of unknown relative quality, owing to large but unquantified uncertainties in the modelling process. Here we report a systematic attempt to determine the range of climate changes consistent with these uncertainties, based on a 53-member ensemble of model versions constructed by varying model parameters. We estimate a probability density function for the sensitivity of climate to a doubling of atmospheric carbon dioxide levels, and obtain a 5-95 per cent probability range of 2.4-5.4 degrees C. Our probability density function is constrained by objective estimates of the relative reliability of different model versions, the choice of model parameters that are varied and their uncertainty ranges, specified on the basis of expert advice. Our ensemble produces a range of regional changes much wider than indicated by traditional methods based on scaling the response patterns of an individual simulation.
                Bookmark

                Author and article information

                Affiliations
                [1 ] Met Office, Hadley Centre for Climate Prediction and Research (Reading Unit), Meteorology Building, University of Reading, Reading RG6 6BB, UK. peter.stott@metoffice.gov.uk
                Journal
                Nature
                Nature
                Springer Nature America, Inc
                1476-4687
                0028-0836
                Dec 02 2004
                : 432
                : 7017
                15577907 nature03089 10.1038/nature03089

                Comments

                Comment on this article