14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluorescence Quantum Yield of Thioflavin T in Rigid Isotropic Solution and Incorporated into the Amyloid Fibrils

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, the fluorescence of thioflavin T (ThT) was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution ( T/η→0). The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution.

          H. Levine (1993)
          Thioflavine T (ThT) associates rapidly with aggregated fibrils of the synthetic beta/A4-derived peptides beta(1-28) and beta(1-40), giving rise to a new excitation (ex) (absorption) maximum at 450 nm and enhanced emission (em) at 482 nm, as opposed to the 385 nm (ex) and 445 nm (em) of the free dye. This change is dependent on the aggregated state as monomeric or dimeric peptides do not react, and guanidine dissociation of aggregates destroys the signal. There was no effect of high salt concentrations. Binding to the beta(1-40) is of lower affinity, Kd 2 microM, while it saturates with a Kd of 0.54 microM for beta(1-28). Insulin fibrils converted to a beta-sheet conformation fluoresce intensely with ThT. A variety of polyhydroxy, polyanionic, or polycationic materials fail to interact or impede interaction with the amyloid peptides. This fluorometric technique should allow the kinetic elucidation of the amyloid fibril assembly process as well as the testing of agents that might modulate their assembly or disassembly.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Protein misfolding, evolution and disease.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism.

              In the search for the molecular mechanism of insulin fibrillation, the kinetics of insulin fibril formation were studied under different conditions using the fluorescent dye thioflavin T (ThT). The effect of insulin concentration, agitation, pH, ionic strength, anions, seeding, and addition of 1-anilinonaphthalene-8-sulfonic acid (ANS), urea, TMAO, sucrose, and ThT on the kinetics of fibrillation was investigated. The kinetics of the fibrillation process could be described by the lag time for formation of stable nuclei (nucleation) and the apparent rate constant for the growth of fibrils (elongation). The addition of seeds eliminated the lag phase. An increase in insulin concentration resulted in shorter lag times and faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and slower growth of fibrils. There was no clear correlation between the rate of fibril elongation and ionic strength. Agitation during fibril formation attenuated the effects of insulin concentration and ionic strength on both lag times and fibril growth. The addition of ANS increased the lag time and decreased the apparent growth rate for insulin fibril formation. The ANS-induced inhibition appears to reflect the formation of amorphous aggregates. The denaturant, urea, decreased the lag time, whereas the stabilizers, trimethylamine N-oxide dihydrate (TMAO) and sucrose, increased the lag times. The results indicated that both nucleation and fibril growth were controlled by hydrophobic and electrostatic interactions. A kinetic model, involving the association of monomeric partially folded intermediates, whose concentration is stimulated by the air-water interface, leading to formation of the critical nucleus and thence fibrils, is proposed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                29 October 2010
                : 5
                : 10
                : e15385
                Affiliations
                [1 ]Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
                [2 ]Yanka Kupala Grodno State University, Grodno, Belarus
                [3 ]Institute of Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
                [4 ]Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
                Griffith University, Australia
                Author notes

                Conceived and designed the experiments: KKT IMK VNU. Performed the experiments: AIS AAM. Analyzed the data: AAM IMK KKT. Contributed reagents/materials/analysis tools: AAM KKT. Wrote the paper: IMK KKT VNU.

                Article
                PONE-D-10-00227
                10.1371/journal.pone.0015385
                2966444
                21048945
                baeeea48-59ac-40cd-9d6c-a12047561794
                Sulatskaya, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 July 2010
                : 1 September 2010
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Biochemistry
                Biophysics
                Biomacromolecule-Ligand Interactions
                Macromolecular Assemblies
                Protein Folding
                Physics
                Electromagnetic Radiation
                Visible Light
                Medical Physics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article