38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Efficacy of Stem Cell Therapy for Diabetes Mellitus: A Meta-Analysis

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Stem cell therapy is a promising therapeutic modality for advanced diabetes mellitus (DM). This study presents a meta-analysis of relevant clinical trials to determine the efficacy of stem cell therapy in DM. We aim to critically evaluate and synthesize clinical evidence on the safety and efficiency of different types of stem cell therapy for both T1DM and T2DM.

          Methods and Findings

          We pooled participant-level data from twenty-two eligible clinical trials that satisfied our inclusion criteria, with a total of 524 patients. There were significant differences in the outcome based on the type and source of the infused cells. Out of all T1DM patients who received CD34 + hematopoietic stem cell (HSC) infusion, 58.9% became insulin independent for a mean period of 16 months, whereas the results were uniformly negative in patients who received umbilical cord blood (UCB). Infusion of umbilical cord mesenchymal stem cells (UC-MSCs) provided significantly beneficial outcome in T1DM, when compared to bone-marrow mesenchymal stem cells (BM-MSCs) (P<0.0001 and P = 0.1557). Administration of stem cell therapy early after DM diagnosis was more effective than intervention at later stages (relative risk = 2.0, P = 0.0008). Adverse effects were observed in only 21.72% of both T1DM and T2DM stem cell recipients with no reported mortality. Out of all poor responders, 79.5% were diagnosed with diabetic ketoacidosis.

          Conclusions

          Stem cell transplantation can represent a safe and effective treatment for selected patients with DM. In this cohort of trials, the best therapeutic outcome was achieved with CD34 + HSC therapy for T1DM, while the poorest outcome was observed with HUCB for T1DM. Diabetic ketoacidosis impedes therapeutic efficacy.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses.

          The Quality of Reporting of Meta-analyses (QUOROM) conference was convened to address standards for improving the quality of reporting of meta-analyses of clinical randomised controlled trials (RCTs). The QUOROM group consisted of 30 clinical epidemiologists, clinicians, statisticians, editors, and researchers. In conference, the group was asked to identify items they thought should be included in a checklist of standards. Whenever possible, checklist items were guided by research evidence suggesting that failure to adhere to the item proposed could lead to biased results. A modified Delphi technique was used in assessing candidate items. The conference resulted in the QUOROM statement, a checklist, and a flow diagram. The checklist describes our preferred way to present the abstract, introduction, methods, results, and discussion sections of a report of a meta-analysis. It is organised into 21 headings and subheadings regarding searches, selection, validity assessment, data abstraction, study characteristics, and quantitative data synthesis, and in the results with "trial flow", study characteristics, and quantitative data synthesis; research documentation was identified for eight of the 18 items. The flow diagram provides information about both the numbers of RCTs identified, included, and excluded and the reasons for exclusion of trials. We hope this report will generate further thought about ways to improve the quality of reports of meta-analyses of RCTs and that interested readers, reviewers, researchers, and editors will use the QUOROM statement and generate ideas for its improvement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010

            OBJECTIVE To describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010. RESEARCH DESIGN AND METHODS A total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999–2002), mid (2003–2006), or recent (2007–2010) transplant era based on annual follow-up to 5 years. RESULTS Insulin independence at 3 years after transplant improved from 27% in the early era (1999–2002, n = 214) to 37% in the mid (2003–2006, n = 255) and to 44% in the most recent era (2007–2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P < 0.001). Reduction of HbA1c and resolution of severe hypoglycemia exhibited enduring long-term effects. Fasting blood glucose stabilization also showed improvements in the most recent era. There were also modest reductions in the occurrence of adverse events. The islet reinfusion rate was lower: 48% by 1 year in 2007–2010 vs. 60–65% in 1999–2006 (P < 0.01). Recipients that ever achieved insulin-independence experienced longer duration of islet graft function (P < 0.001). CONCLUSIONS The CITR shows improvement in primary efficacy and safety outcomes of islet transplantation in recipients who received transplants in 2007–2010 compared with those in 1999–2006, with fewer islet infusions and adverse events per recipient.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial.

              Findings of small studies have suggested that short treatments with anti-CD3 monoclonal antibodies that are mutated to reduce Fc receptor binding preserve β-cell function and decrease insulin needs in patients with recent-onset type 1 diabetes. In this phase 3 trial, we assessed the safety and efficacy of one such antibody, teplizumab. In this 2-year trial, patients aged 8-35 years who had been diagnosed with type 1 diabetes for 12 weeks or fewer were enrolled and treated at 83 clinical centres in North America, Europe, Israel, and India. Participants were allocated (2:1:1:1 ratio) by an interactive telephone system, according to computer-generated block randomisation, to receive one of three regimens of teplizumab infusions (14-day full dose, 14-day low dose, or 6-day full dose) or placebo at baseline and at 26 weeks. The Protégé study is still underway, and patients and study staff remain masked through to study closure. The primary composite outcome was the percentage of patients with insulin use of less than 0·5 U/kg per day and glycated haemoglobin A(1c) (HbA(1C)) of less than 6·5% at 1 year. Analyses included all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, number NCT00385697. 763 patients were screened, of whom 516 were randomised to receive 14-day full-dose teplizumab (n=209), 14-day low-dose teplizumab (n=102), 6-day full-dose teplizumab (n=106), or placebo (n=99). Two patients in the 14-day full-dose group and one patient in the placebo group did not start treatment, so 513 patients were eligible for efficacy analyses. The primary outcome did not differ between groups at 1 year: 19·8% (41/207) in the 14-day full-dose group; 13·7% (14/102) in the 14-day low-dose group; 20·8% (22/106) in the 6-day full-dose group; and 20·4% (20/98) in the placebo group. 5% (19/415) of patients in the teplizumab groups were not taking insulin at 1 year, compared with no patients in the placebo group at 1 year (p=0·03). Across the four study groups, similar proportions of patients had adverse events (414/417 [99%] in the teplizumab groups vs 98/99 [99%] in the placebo group) and serious adverse events (42/417 [10%] vs 9/99 [9%]). The most common clinical adverse event in the teplizumab groups was rash (220/417 [53%] vs 20/99 [20%] in the placebo group). Findings of exploratory analyses suggest that future studies of immunotherapeutic intervention with teplizumab might have increased success in prevention of a decline in β-cell function (measured by C-peptide) and provision of glycaemic control at reduced doses of insulin if they target patients early after diagnosis of diabetes and children. MacroGenics, the Juvenile Diabetes Research Foundation, and Eli Lilly. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                13 April 2016
                2016
                : 11
                : 4
                : e0151938
                Affiliations
                [001]Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6 th of October City, Egypt
                University-Hospital of Parma, ITALY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AEB NEB. Performed the experiments: AEB NEB. Analyzed the data: AEB NEB. Wrote the paper: AEB NEB.

                Article
                PONE-D-15-52174
                10.1371/journal.pone.0151938
                4830527
                27073927
                baf298de-6fe1-4282-9293-b43bdc60bd9f
                © 2016 El-Badawy, El-Badri

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 December 2015
                : 7 March 2016
                Page count
                Figures: 5, Tables: 1, Pages: 16
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100003009, Science and Technology Development Fund;
                Award ID: 5300
                Award Recipient :
                This work is supported by grant #5300, funded by the Science and Technology Development Fund (STDF), Egypt.
                Categories
                Research Article
                Medicine and Health Sciences
                Clinical Genetics
                Stem Cell Therapy
                Medicine and Health Sciences
                Endocrinology
                Endocrine Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Metabolic Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Endocrinology
                Diabetic Endocrinology
                Insulin
                Biology and Life Sciences
                Biochemistry
                Hormones
                Insulin
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Stem Cells
                Mesenchymal Stem Cells
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Blood and Lymphatic System Procedures
                Stem Cell Transplantation
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Transplantation
                Cell Transplantation
                Stem Cell Transplantation
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Transplantation
                Cell Transplantation
                Islet Transplantation
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Endocrine System Procedures
                Islet Transplantation
                Medicine and health sciences
                Diagnostic medicine
                Diabetes diagnosis and management
                HbA1c
                Biology and life sciences
                Biochemistry
                Proteins
                Hemoglobin
                HbA1c
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Stem Cells
                Hematopoietic Stem Cells
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article