16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of Functional Human Adipose Tissue in Mice from Primed Progenitor Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adipose tissue (AT) is used extensively in reconstructive and regenerative therapies, but transplanted fat often undergoes cell death, leading to inflammation, calcification, and requirement for further revision surgery. Previously, we have found that mesenchymal progenitor cells within human AT can proliferate in three-dimensional culture under proangiogenic conditions. These cells (primed ADipose progenitor cells, PADS) robustly differentiate into adipocytes in vitro (ad-PADS). The goal of this study is to determine whether ad-PADS can form structured AT in vivo, with potential for use in surgical applications. Grafts formed from ad-PADS were compared to grafts formed from AT obtained by liposuction after implantation into nude mice. Graft volume was measured by microcomputed tomography scanning, and the functionality of cells within the graft was assessed by quantifying circulating human adiponectin. The degree of graft vascularization by donor or host vessels and the content of human or mouse adipocytes within the graft were measured using species-specific endothelial and adipocyte-specific quantitative real time polymerase chain reaction probes, and histochemistry with mouse and human-specific lectins. Our results show that ad-PADS grafted subcutaneously into nude mice induce robust vascularization from the host, continue to increase in volume over time, express the human adipocyte marker PLIN1 at levels comparable to human AT, and secrete increasing amounts of human adiponectin into the mouse circulation. In contrast, grafts composed of AT fragments obtained by liposuction become less vascularized, develop regions of calcification and decreased content of PLIN1, and secrete lower amounts of adiponectin per unit volume. Enrichment of liposuction tissue with ad-PADS improves vascularization, indicating that ad-PADS may be proangiogenic. Mechanistically, ad-PADS express an extracellular matrix gene signature that includes elements previously associated with small vessel development (COL4A1). Thus, through the formation of a proangiogenic environment, ad-PADS can form functional AT with capacity for long-term survival, and can potentially be used to improve outcomes in reconstructive and regenerative medicine.

          Impact Statement

          This research describes the use of human mesenchymal progenitor cells for generating functional adipose tissue in vivo in a nude mouse model. Further preclinical development of the methods and insights described in this article can lead to therapeutic use of these cells in regenerative and reconstructive medicine.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial.

          Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts. Healthy participants underwent two liposuctions taken 14 days apart: one for ASC isolation and ex-vivo expansion, and another for the preparation of fat grafts. Two purified fat grafts (30 mL each) taken from the second liposuction were prepared for each participant. One graft was enriched with ASCs (20 × 10(6) cells per mL fat), and another graft without ASC enrichment served as a control. The fat grafts were injected subcutaneously as a bolus to the posterior part of the right and left upper arm according to the randomisation sequence. The volumes of injected fat grafts were measured by MRI immediately after injection and after 121 days before surgical removal. The primary goal was to compare the residual graft volumes of ASC-enriched grafts with those of control grafts. This study is registered at www.clinicaltrialsregister.eu, number 2010-023006-12. 13 participants were enrolled, three of whom were excluded. Compared with the control grafts, the ASC-enriched fat grafts had significantly higher residual volumes: 23·00 (95% CI 20·57-25·43) cm(3) versus 4·66 (3·16-6·16) cm(3) for the controls, corresponding to 80·9% (76·6-85·2) versus 16·3% (11·1-21·4) of the initial volumes, respectively (p<0·0001). The difference between the groups was 18·34 (95% CI 15·70-20·98) cm(3), equivalent to 64·6% (57·1-72·1; p<0·0001). No serious adverse events were noted. The procedure of ASC-enriched fat grafting had excellent feasibility and safety. These promising results add significantly to the prospect of stem cell use in clinical settings, and indicate that ASC graft enrichment could render lipofilling a reliable alternative to major tissue augmentation, such as breast surgery, with allogeneic material or major flap surgery. Danish Cancer Society, Centre of Head and Orthopaedics Rigshospitalet, and Moalem Weitemeyer Bendtsen. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection.

            Injective transfer of autologous aspirated fat is a popular option for soft tissue augmentation, but several issues require attention, including unpredictability and a low survival rate due to partial necrosis. In this study, histologic features and yield of adipose-derived stromal (stem) cells (ASCs) were compared between human aspirated fat and excised whole fat. Aspirated fat contained fewer large vascular structures, and ASC yield was lower in aspirated fat. Aspirated fat was transplanted subcutaneously into severe combined immunodeficiency mice with (cell-assisted lipotransfer; CAL) or without (non-CAL) vascular stromal fractions containing ASCs isolated from adipose tissue. The CAL fat survived better (35% larger on average) than non-CAL fat, and microvasculature was detected more prominently in CAL fat, especially in the outer layers. DiI-labeled vascular stromal fraction cells were found between adipocytes and in the connective tissue in CAL fat, and some of these cells were immunopositive for von Willebrand factor, suggesting differentiation into vascular endothelial cells. Another experiment that used vascular stromal fractions taken from green fluorescent protein rats also suggested that ASCs differentiated into vascular endothelial cells and contributed to neoangiogenesis in the acute phase of transplantation. These findings may partly explain why transplanted aspirated fat does not survive well and suggest clinical potential of the CAL method for soft tissue augmentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantifying size and number of adipocytes in adipose tissue.

              White adipose tissue (WAT) is a dynamic and modifiable tissue that develops late during gestation in humans and through early postnatal development in rodents. WAT is unique in that it can account for as little as 3% of total body weight in elite athletes or as much as 70% in the morbidly obese. With the development of obesity, WAT undergoes a process of tissue remodeling in which adipocytes increase in both number (hyperplasia) and size (hypertrophy). Metabolic derangements associated with obesity, including type 2 diabetes, occur when WAT growth through hyperplasia and hypertrophy cannot keep pace with the energy storage needs associated with chronic energy excess. Accordingly, hypertrophic adipocytes become overburdened with lipids, resulting in changes in the secreted hormonal milieu. Lipids that cannot be stored in the engorged adipocytes become ectopically deposited in organs such as the liver, muscle, and pancreas. WAT remodeling therefore coincides with obesity and secondary metabolic diseases. Obesity, however, is not unique in causing WAT remodeling: changes in adiposity also occur with aging, calorie restriction, cancers, and diseases such as HIV infection. In this chapter, we describe a semiautomated method of quantitatively analyzing the histomorphometry of WAT using common laboratory equipment. With this technique, the frequency distribution of adipocyte sizes across the tissue depot and the number of total adipocytes per depot can be estimated by counting as few as 100 adipocytes per animal. In doing so, the method described herein is a useful tool for accurately quantifying WAT development, growth, and remodeling. © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Tissue Eng Part A
                Tissue Eng Part A
                tea
                Tissue Engineering. Part A
                Mary Ann Liebert, Inc., publishers (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                1937-3341
                1937-335X
                01 June 2019
                12 June 2019
                12 June 2019
                : 25
                : 11-12
                : 842-854
                Affiliations
                [ 1 ]Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
                [ 2 ]Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts.
                Author notes
                [*]

                Equal contributions.

                [†]

                Co-senior authors.

                [*]Address correspondence to: Silvia Corvera, MD, Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605 silvia.corvera@ 123456umassmed.edu
                Article
                10.1089/ten.tea.2018.0067
                10.1089/ten.tea.2018.0067
                6590775
                30306830
                baf6b0f7-e588-40ba-9088-cb3386c013f1
                © Raziel Rojas-Rodriguez et al., 2019; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are cited.

                History
                : 26 February 2018
                : 03 July 2018
                Page count
                Figures: 6, Tables: 2, References: 63, Pages: 13
                Categories
                Original Articles

                mice,nude,regenerative medicine,adipocytes,adipose tissue,adipogenesis,stem cells,extracellular matrix

                Comments

                Comment on this article