12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dynamin-related protein 1 (Drp1) is essential for mitochondrial and peroxisomal fission. Recent studies propose that Drp1 does not sever but rather constricts mitochondrial membranes allowing dynamin 2 (Dnm2) to execute final scission. Here, we report that unlike Drp1, Dnm2 is dispensable for peroxisomal and mitochondrial fission, as these events occurred in Dnm2 knockout cells. Fission events were also observed in mouse embryonic fibroblasts lacking Dnm1, 2 and 3. Using reconstitution experiments on preformed membrane tubes, we show that Drp1 alone both constricts and severs membrane tubes. Scission required the membrane binding, self-assembling and GTPase activities of Drp1 and occurred on tubes up to 250 nm in radius. In contrast, Dnm2 exhibited severely restricted fission capacity with occasional severing of tubes below 50 nm in radius. We conclude that Drp1 has both membrane constricting and severing abilities and is the dominant dynamin performing mitochondrial and peroxisomal fission.

          Abstract

          Drp1 and Dnm2 have been implicated in mitochondrial fission events, although their specific activities in constriction and scission have been unclear. Here, the authors demonstrate that Drp1 is sufficient to constrict and sever mitochondrial and peroxisomal membranes in the absence of Dnm proteins.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice.

          Mitochondrial morphology is dynamically controlled by a balance between fusion and fission. The physiological importance of mitochondrial fission in vertebrates is less clearly defined than that of mitochondrial fusion. Here we show that mice lacking the mitochondrial fission GTPase Drp1 have developmental abnormalities, particularly in the forebrain, and die after embryonic day 12.5. Neural cell-specific (NS) Drp1(-/-) mice die shortly after birth as a result of brain hypoplasia with apoptosis. Primary culture of NS-Drp1(-/-) mouse forebrain showed a decreased number of neurites and defective synapse formation, thought to be due to aggregated mitochondria that failed to distribute properly within the cell processes. These defects were reflected by abnormal forebrain development and highlight the importance of Drp1-dependent mitochondrial fission within highly polarized cells such as neurons. Moreover, Drp1(-/-) murine embryonic fibroblasts and embryonic stem cells revealed that Drp1 is required for a normal rate of cytochrome c release and caspase activation during apoptosis, although mitochondrial outer membrane permeabilization, as examined by the release of Smac/Diablo and Tim8a, may occur independently of Drp1 activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane phosphatidylserine regulates surface charge and protein localization.

            Electrostatic interactions with negatively charged membranes contribute to the subcellular targeting of proteins with polybasic clusters or cationic domains. Although the anionic phospholipid phosphatidylserine is comparatively abundant, its contribution to the surface charge of individual cellular membranes is unknown, partly because of the lack of reagents to analyze its distribution in intact cells. We developed a biosensor to study the subcellular distribution of phosphatidylserine and found that it binds the cytosolic leaflets of the plasma membrane, as well as endosomes and lysosomes. The negative charge associated with the presence of phosphatidylserine directed proteins with moderately positive charge to the endocytic pathway. More strongly cationic proteins, normally associated with the plasma membrane, relocalized to endocytic compartments when the plasma membrane surface charge decreased on calcium influx.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              C. elegans Dynamin-Related Protein DRP-1 Controls Severing of the Mitochondrial Outer Membrane

              Little is known about the mechanism of mitochondrial division. We show here that mitochondria are disrupted by mutations in a C. elegans dynamin-related protein (DRP-1). Mutant DRP-1 causes the mitochondrial matrix to retract into large blebs that are both surrounded and connected by tubules of outer membrane. This indicates that scission of the mitochondrial outer membrane is inhibited, while scission of the inner membrane still occurs. Overexpressed wild-type DRP-1 causes mitochondria to become excessively fragmented, consistent with an active role in mitochondrial scission. DRP-1 fused to GFP is observed in spots on mitochondria where scission eventually occurs. These data indicate that wild-type DRP-1 contributes to the final stages of mitochondrial division by controlling scission of the mitochondrial outer membrane.
                Bookmark

                Author and article information

                Contributors
                pucadyil@iiserpune.ac.in
                michael.ryan@monash.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                7 December 2018
                7 December 2018
                2018
                : 9
                : 5239
                Affiliations
                [1 ]ISNI 0000 0004 1764 2413, GRID grid.417959.7, Indian Institute of Science Education and Research, ; Dr. Homi Bhabha Road, Pashan, Pune, 411008 Maharashtra India
                [2 ]ISNI 0000 0004 1936 7857, GRID grid.1002.3, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, , Monash University, ; 3800 Melbourne, Australia
                Author information
                http://orcid.org/0000-0002-2907-9889
                http://orcid.org/0000-0003-2586-8829
                Article
                7543
                10.1038/s41467-018-07543-w
                6286342
                30531964
                baf8ccbb-e322-421e-a12d-65a9a54838ee
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 June 2018
                : 7 November 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article