38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad “moonlighting” functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase’s importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the Warburg effect: the metabolic requirements of cell proliferation.

          In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
            • Record: found
            • Abstract: found
            • Article: not found

            Human schistosomiasis.

            Human schistosomiasis--or bilharzia--is a parasitic disease caused by trematode flukes of the genus Schistosoma. By conservative estimates, at least 230 million people worldwide are infected with Schistosoma spp. Adult schistosome worms colonise human blood vessels for years, successfully evading the immune system while excreting hundreds to thousands of eggs daily, which must either leave the body in excreta or become trapped in nearby tissues. Trapped eggs induce a distinct immune-mediated granulomatous response that causes local and systemic pathological effects ranging from anaemia, growth stunting, impaired cognition, and decreased physical fitness, to organ-specific effects such as severe hepatosplenism, periportal fibrosis with portal hypertension, and urogenital inflammation and scarring. At present, preventive public health measures in endemic regions consist of treatment once every 1 or 2 years with the isoquinolinone drug, praziquantel, to suppress morbidity. In some locations, elimination of transmission is now the goal; however, more sensitive diagnostics are needed in both the field and clinics, and integrated environmental and health-care management will be needed to ensure elimination. Copyright © 2014 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Schistosomiasis

              Schistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms (blood flukes) of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia and, particularly, in sub-Saharan Africa. Infective larvae grow in an intermediate host (fresh-water snails) before penetrating the skin of the definitive human host. Mature adult worms reside in the mesenteric (Schistosoma mansoni and Schistosoma japonicum) or pelvic (Schistosoma haematobium) veins, where female worms lay eggs, which are secreted in stool or urine. Eggs trapped in the surrounding tissues and organs, such as the liver and bladder, cause inflammatory immune responses (including granulomas) that result in intestinal, hepato-splenic or urogenital disease. Diagnosis requires the detection of eggs in excreta or worm antigens in the serum, and sensitive, rapid, point-of-care tests for populations living in endemic areas are needed. The anti-schistosomal drug praziquantel is safe and efficacious against adult worms of all the six Schistosoma spp. infecting humans; however, it does not prevent reinfection and the emergence of drug resistance is a concern. Schistosomiasis elimination will require a multifaceted approach, including: treatment; snail control; information, education and communication; improved water, sanitation and hygiene; accurate diagnostics; and surveillance-response systems that are readily tailored to social-ecological settings.

                Author and article information

                Contributors
                Journal
                Front Mol Biosci
                Front Mol Biosci
                Front. Mol. Biosci.
                Frontiers in Molecular Biosciences
                Frontiers Media S.A.
                2296-889X
                11 August 2021
                2021
                : 8
                : 719678
                Affiliations
                Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
                Author notes

                Edited by: Nikolaos E. Labrou, Agricultural University of Athens, Greece

                Reviewed by: Benjamin Bernard Armando Raymond, UMR5089 Institut de Pharmacologie et de Biologie Structurale (IPBS), France

                Haizhen Wu, East China University of Science and Technology, China

                *Correspondence: David B. Pirovich, david.pirovich@ 123456tufts.edu

                This article was submitted to Protein Chemistry and Enzymology, a section of the journal Frontiers in Molecular Biosciences

                Article
                719678
                10.3389/fmolb.2021.719678
                8385298
                34458323
                bb038bc9-f48e-48f2-a428-464734ff80b0
                Copyright © 2021 Pirovich, Da’dara and Skelly.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 June 2021
                : 31 July 2021
                Funding
                Funded by: National Institute of Allergy and Infectious Diseases 10.13039/100000060
                Award ID: AI056273
                Categories
                Molecular Biosciences
                Review

                aldolase,vaccine,inhibitor,moonlighting function,glycolysis
                aldolase, vaccine, inhibitor, moonlighting function, glycolysis

                Comments

                Comment on this article

                Related Documents Log