28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age-related changes in radiation-induced micronuclei among healthy adults

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to establish the extent of in vitro radioresponse of lymphocytes among 62 healthy adults of both genders and to estimate the distribution of baseline micronuclei and radiosensitivity among individuals of the study population using the cytochalasin block micronucleus test. A younger study group consisted of 10 males (mean age, 22.4 years; range, 21-27) and 12 females (mean age, 24.8 years; range, 20-29), whereas an older study group consisted of 18 males (mean age, 35.1 years; range, 30-44) and 22 females (mean age, 38.5 years; range, 30-48). For evaluation of radiosensitivity blood samples were irradiated in vitro using 60Co g-ray source. The radiation dose employed was 2 Gy, the dose rate 0.45 Gy/min. The study revealed a significant gender effect on baseline micronuclei favoring females (Z = 3.25, P < 0.001), while yields of radiation-induced micronuclei did not differ significantly (Z = 0.56, P < 0.56) between genders. The distribution of baseline micronuclei among the individuals tested followed Poisson distribution in both study groups and in both genders, whereas the distribution of radiosensitivity among individuals of the older study group did not fulfill Poisson expectations (Kolmogorov-Smirnof test, P < 0.01). In contrast to a nonsignificant difference in radiosensitivity between males and females of the same age group (Z = 1.97, P < 0.56), a statistically significant difference in radiosensitivity between younger and older group for both genders was found (Z = 3.03, P < 0.03). Since the individuals tested were healthy, the observed variability in radiation response is considered to be an early effect of ageing.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The HUman MicroNucleus Project--An international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans.

          The International Collaborative Project on Micronucleus Frequency in Human Populations (HUMN) was organized to collect data on micronucleus (MN) frequencies in different human populations and different cell types. The test procedures considered by this project are assays using human lymphocytes (cytokinesis-block method), exfoliated epithelial cells, and other cell types. Data (including descriptions of the populations monitored, detailed test protocols, and test results) are being obtained from a large number of laboratories throughout the world and are being entered into a unified database. The information will be used to: (1) determine the extent of variation of 'normal' values for different laboratories and the influence of other factors potentially affecting baseline MN frequency, e.g., age, gender and life-style; (2) provide information on the effect of experimental protocol variations on MN frequency measurements; (3) design and test optimal protocols for the different cell types; and (4) determine the extent to which MN frequency is a valid biomarker of ageing and risk for diseases such as cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human DNA repair genes.

            Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations.

              M Fenech (1992)
              The development of the cytokinesis-block (CB) technique has transformed the human-lymphocyte micronucleus assay (MN) into a reliable and precise method for assessing chromosome damage. Recent studies in our laboratory have confirmed that this method is a sensitive indicator of in vivo radiation exposure in (a) patients undergoing fractionated partial-body radiotherapy and (b) rodents exposed to uniform whole-body irradiation, thus supporting the application of the cytokinesis-block micronucleus (CBMN) assay for biological dosimetry. To further define the use of this assay in biomonitoring we performed extensive studies to determine the spontaneous level of MN in normal human populations and its relationship to various life-style factors. We have also developed a new variation to the CBMN assay that permits the conversion of excision-repairable lesions to MN within one cell-cycle using cytosine arabinoside. With this method the slope of the in vitro dose-response curves was increased by a factor of 1.8 for X-rays, 10.3 for ultraviolet (UV, 254 nm) radiation and approximately 40-fold for methylnitrosourea. Consequently the CBMN assay can now be used to measure not only whole chromosome loss or chromosome breaks but also excision-repair events. The versatility and simplicity of the CBMN assay together with new developments in automation should ensure its successful application in monitoring exposed populations as well as in identifying mutagen-sensitive individuals within a population.
                Bookmark

                Author and article information

                Journal
                bjmbr
                Brazilian Journal of Medical and Biological Research
                Braz J Med Biol Res
                Associação Brasileira de Divulgação Científica (Ribeirão Preto, SP, Brazil )
                0100-879X
                1414-431X
                August 2004
                : 37
                : 8
                : 1111-1117
                Affiliations
                [01] Belgrade orgnameVinca Institute of Nuclear Sciences Yugoslavia
                Article
                S0100-879X2004000800002 S0100-879X(04)03700802
                10.1590/S0100-879X2004000800002
                bb047872-6250-4fe6-9fc3-b7523a15a24d

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 22 March 2004
                : 04 February 2003
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 31, Pages: 7
                Product

                SciELO Brazil

                Self URI: Full text available only in PDF format (EN)
                Categories
                Cell Biology

                Cell biology
                Baseline micronuclei,Radiosensitivity,Ageing,Human lymphocytes
                Cell biology
                Baseline micronuclei, Radiosensitivity, Ageing, Human lymphocytes

                Comments

                Comment on this article