265
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The mechanisms by which the conserved genetic “toolkit” for development generates phenotypic disparity across metazoans is poorly understood. Echinoderm larvae provide a great resource for understanding how developmental novelty arises. The sea urchin pluteus larva is dramatically different from basal echinoderm larval types, which include the auricularia-type larva of its sister taxon, the sea cucumbers, and the sea star bipinnaria larva. In particular, the pluteus has a mesodermally-derived larval skeleton that is not present in sea star larvae or any outgroup taxa. To understand the evolutionary origin of this structure, we examined the molecular development of mesoderm in the sea cucumber, Parastichopus parvimensis.

          Results

          By comparing gene expression in sea urchins, sea cucumbers and sea stars, we partially reconstructed the mesodermal regulatory state of the echinoderm ancestor. Surprisingly, we also identified expression of the transcription factor alx1 in a cryptic skeletogenic mesenchyme lineage in P. parvimensis. Orthologs of alx1 are expressed exclusively within the sea urchin skeletogenic mesenchyme, but are not expressed in the mesenchyme of the sea star, which suggests that alx1 + mesenchyme is a synapomorphy of at least sea urchins and sea cucumbers. Perturbation of Alx1 demonstrates that this protein is necessary for the formation of the sea cucumber spicule. Overexpression of the sea star alx1 ortholog in sea urchins is sufficient to induce additional skeleton, indicating that the Alx1 protein has not evolved a new function during the evolution of the larval skeleton.

          Conclusions

          The proposed echinoderm ancestral mesoderm state is highly conserved between the morphologically similar, but evolutionarily distant, auricularia and bipinnaria larvae. However, the auricularia, but not bipinnaria, also develops a simple skelotogenic cell lineage. Our data indicate that the first step in acquiring these novel cell fates was to re-specify the ancestral mesoderm into molecularly distinct territories. These new territories likely consisted of only a few cells with few regulatory differences from the ancestral state, thereby leaving the remaining mesoderm to retain its original function. The new territories were then free to take on a new fate. Partitioning of existing gene networks was a necessary pre-requisite to establish novelty in this system.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Global regulatory logic for specification of an embryonic cell lineage.

          Explanation of a process of development must ultimately be couched in the terms of the genomic regulatory code. Specification of an embryonic cell lineage is driven by a network of interactions among genes encoding transcription factors. Here, we present the gene regulatory network (GRN) that directs the specification of the skeletogenic micromere lineage of the sea urchin embryo. The GRN now includes all regulatory genes expressed in this lineage up to late blastula stage, as identified in a genomewide survey. The architecture of the GRN was established by a large-scale perturbation analysis in which the expression of each gene in the GRN was cut off by use of morpholinos, and the effects on all other genes were measured quantitatively. Several cis-regulatory analyses provided additional evidence. The explanatory power of the GRN suffices to provide a causal explanation for all observable developmental functions of the micromere lineage during the specification period. These functions are: (i) initial acquisition of identity through transcriptional interpretation of localized maternal cues; (ii) activation of specific regulatory genes by use of a double negative gate; (iii) dynamic stabilization of the regulatory state by activation of a feedback subcircuit; (iv) exclusion of alternative regulatory states; (v) presentation of a signal required by the micromeres themselves and of two different signals required for development of adjacent endomesodermal lineages; and (vi) lineage-specific activation of batteries of skeletogenic genes. The GRN precisely predicts gene expression responses and provides a coherent explanation of the biology of specification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.

            Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sea urchin Forkhead gene family: phylogeny and embryonic expression.

              Transcription factors of the Forkhead (Fox) family have been identified in many metazoans, and play important roles in diverse biological processes. Here we define the set of fox genes present in the sea urchin genome, and survey their usage during development. This genome includes 22 fox genes, only three of which were previously known. Of the 23 fox gene subclasses identified in vertebrate genomes, the Strongylocentrotus purpuratus genome has orthologues of all but four (E, H, R and S). Phylogenetic analysis suggests that one S. purpuratus fox gene is equally related to foxA and foxB of vertebrates; this gene defines a new class. Two other genes appear to be specific to the sea urchin, with respect to the genomes so far sequenced. Fox genes orthologous with those of vertebrates but lacking in arthropod or nematode genomes may be deuterostome-specific (subclasses I, J1, J2, L1, M and Q1), while the majority are pan-bilaterian. All but one of the S. purpuratus fox genes (SpfoxQ1) are expressed during embryogenesis, most in a very specific temporal and spatial manner. The sea urchin fox genes clearly execute many different regulatory functions, and almost all of them participate in the process of embryonic development.
                Bookmark

                Author and article information

                Journal
                EvoDevo
                Evodevo
                EvoDevo
                BioMed Central
                2041-9139
                2012
                9 August 2012
                : 3
                : 17
                Affiliations
                [1 ]Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
                Article
                2041-9139-3-17
                10.1186/2041-9139-3-17
                3482387
                22877149
                bb0c8454-b7cd-49e9-8d78-0481fd00773a
                Copyright ©2012 McCauley et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 June 2012
                : 22 June 2012
                Categories
                Research

                Developmental biology
                echinoderm,skeletogenesis,sea cucumber,alx1,evolution of novelty,co-option
                Developmental biology
                echinoderm, skeletogenesis, sea cucumber, alx1, evolution of novelty, co-option

                Comments

                Comment on this article