3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments

      , , , ,
      Food Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Features of promising technologies for pretreatment of lignocellulosic biomass.

          N. Mosier (2005)
          Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hydrolysis of lignocellulosic materials for ethanol production: a review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.

              Information pertaining to enzymatic hydrolysis of cellulose by noncomplexed cellulase enzyme systems is reviewed with a particular emphasis on development of aggregated understanding incorporating substrate features in addition to concentration and multiple cellulase components. Topics considered include properties of cellulose, adsorption, cellulose hydrolysis, and quantitative models. A classification scheme is proposed for quantitative models for enzymatic hydrolysis of cellulose based on the number of solubilizing activities and substrate state variables included. We suggest that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis, and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject. 2004 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Food Chemistry
                Food Chemistry
                Elsevier BV
                03088146
                August 2022
                August 2022
                : 384
                : 132622
                Article
                10.1016/j.foodchem.2022.132622
                35413777
                bb0fe317-d415-43b5-91e5-7a062027e503
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article