Blog
About

23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibodies against outer-capsid proteins of grass carp reovirus expressed in E. coli are capable of neutralizing viral infectivity

      1 , 2 , 1 , , 1

      Virology Journal

      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Grass carp reovirus (GCRV), which causes severe infectious outbreaks of hemorrhagic disease in aquatic animals, is a highly pathogenic agent in the Aquareovirus genus of family Reoviridae. The outer capsid shell of GCRV, composed of the VP5-VP7 protein complex, is believed to be involved in cell entry. The objective of this study was to produce a major neutralization antibody for mitigating GCRV infection.

          Results

          Recombinant plasmids of GCRV outer capsid proteins VP5 and VP7 were constructed and expressed in prokaryotic cells in our previous work. In this study, we prepared GCRV Antibody (Ab), VP5Ab and VP7Ab generated from purified native GCRV, recombinant VP5 and VP7 respectively. Immunoblotting analysis showed that the prepared antibodies were specific to its antigens. In addition, combined plaque and cytopathic effect (CPE)-based TCID 50 (50% tissue culture infective dose) assays showed that both VP5Ab and VP7Ab were capable of neutralizing viral infectivity. Particularly, the neutralizing activity of VP7Ab was 3 times higher than that of VP5Ab, suggesting that VP7 might be a dominating epitope. Moreover, the combination of VP5Ab and VP7Ab appeared to enhance GCRV neutralizing capacity.

          Conclusions

          The results presented in this study indicated that VP7 protein was the major epitope of GCRV. Furthermore, VP5Ab and VP7Ab in combination presented an enhanced capacity to neutralize the GCRV particle, suggesting that the VP5 and VP7 proteins may cooperate with each other during virus cell entry. The data can be used not only to further define the surface epitope domain of GCRV but may also be applicable in the designing of vaccines.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry.

          To achieve cell entry, many nonenveloped viruses must transform from a dormant to a primed state. In contrast to the membrane fusion mechanism of enveloped viruses (e.g., influenza virus), this membrane penetration mechanism is poorly understood. Here, using single-particle cryo-electron microscopy, we report a 3.3 A structure of the primed, infectious subvirion particle of aquareovirus. The density map reveals side-chain densities of all types of amino acids (except glycine), enabling construction of a full-atom model of the viral particle. Our structure and biochemical results show that priming involves autocleavage of the membrane penetration protein and suggest that Lys84 and Glu76 may facilitate this autocleavage in a nucleophilic attack. We observe a myristoyl group, covalently linked to the N terminus of the penetration protein and embedded in a hydrophobic pocket. These results suggest a well-orchestrated process of nonenveloped virus entry involving autocleavage of the penetration protein prior to exposure of its membrane-insertion finger. 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae).

            Full-length and partial genome sequences of four members of the genus Aquareovirus, family Reoviridae (Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus) were characterized. Based on sequence comparison, the unclassified Grass carp reovirus was shown to be a member of the species Aquareovirus C. The status of golden ide reovirus, another unclassified aquareovirus, was also examined. Sequence analysis showed that it did not belong to the species Aquareovirus A or C, but assessment of its relationship to the species Aquareovirus B, D, E and F was hampered by the absence of genetic data from these species. In agreement with previous reports of ultrastructural resemblance between aquareoviruses and orthoreoviruses, genetic analysis revealed homology in the genes of the two groups. This homology concerned eight of the 11 segments of the aquareovirus genome (amino acid identity 17-42%), and similar genetic organization was observed in two other segments. The conserved terminal sequences in the genomes of members of the two groups were also similar. These data are undoubtedly an indication of the common evolutionary origin of these viruses. This clear genetic relatedness between members of distinct genera is unique within the family Reoviridae. Such a genetic relationship is usually observed between members of a single genus. However, the current taxonomic classification of aquareoviruses and orthoreoviruses in two different genera is supported by a number of characteristics, including their distinct G+C contents, unequal numbers of genome segments, absence of an antigenic relationship, different cytopathic effects and specific econiches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing).

              The mammalian reoviruses have provided a valuable model for studying the pathogenesis of viral infections of the central nervous system (CNS). We have used this model to study the effect of antibody on disease produced by the neurally spreading reovirus type 3 (Dearing) (T3). Polyclonal and monoclonal antibodies protect mice from fatal infection with T3 after either footpad or intracerebral virus challenge. Protection occurs with monoclonal antibodies directed against the viral cell attachment protein sigma 1, and with polyclonal antisera without T3 sigma 1 binding activity. In vivo protection occurs with both neutralizing and nonneutralizing monoclonal antibodies. Antibody-mediated protection does not require serum complement and, under specific circumstances, can occur via Fc-independent mechanisms. Antibody can protect mice when transferred up to 5 days after intracerebral challenge and up to 7 days after footpad challenge, times when high titers of virus are present in the CNS. Thus, antibody mediated protection against this neurally spreading virus does not require neutralizing antibody or serum complement and occurs even in the face of established CNS infection.
                Bookmark

                Author and article information

                Affiliations
                [1 ]State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
                [2 ]Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
                Contributors
                Journal
                Virol J
                Virology Journal
                BioMed Central
                1743-422X
                2011
                12 July 2011
                : 8
                : 347
                3149003
                1743-422X-8-347
                21745413
                10.1186/1743-422X-8-347
                Copyright ©2011 Shao et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research

                Microbiology & Virology

                Comments

                Comment on this article