3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hedgehog signaling enables nutrition-responsive inhibition of an alternative morph in a polyphenic beetle.

      Proceedings of the National Academy of Sciences of the United States of America
      Proceedings of the National Academy of Sciences
      allometry, threshold trait, modularity, developmental plasticity, co-option

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recruitment of modular developmental genetic components into new developmental contexts has been proposed as a central mechanism enabling the origin of novel traits and trait functions without necessitating the origin of novel pathways. Here, we investigate the function of the hedgehog (Hh) signaling pathway, a highly conserved pathway best understood for its role in patterning anterior/posterior (A/P) polarity of diverse traits, in the developmental evolution of beetle horns, an evolutionary novelty, and horn polyphenisms, a highly derived form of environment-responsive trait induction. We show that interactions among pathway members are conserved during development of Onthophagus horned beetles and have retained the ability to regulate A/P polarity in traditional appendages, such as legs. At the same time, the Hh signaling pathway has acquired a novel and highly unusual role in the nutrition-dependent regulation of horn polyphenisms by actively suppressing horn formation in low-nutrition males. Down-regulation of Hh signaling lifts this inhibition and returns a highly derived sigmoid horn body size allometry to its presumed ancestral, linear state. Our results suggest that recruitment of the Hh signaling pathway may have been a key step in the evolution of trait thresholds, such as those involved in horn polyphenisms and the corresponding origin of alternative phenotypes and complex allometries.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Phenotypic plasticity's impacts on diversification and speciation.

          Phenotypic plasticity (the ability of a single genotype to produce multiple phenotypes in response to variation in the environment) is commonplace. Yet its evolutionary significance remains controversial, especially in regard to whether and how it impacts diversification and speciation. Here, we review recent theory on how plasticity promotes: (i) the origin of novel phenotypes, (ii) divergence among populations and species, (iii) the formation of new species and (iv) adaptive radiation. We also discuss the latest empirical support for each of these evolutionary pathways to diversification and identify potentially profitable areas for future research. Generally, phenotypic plasticity can play a largely underappreciated role in driving diversification and speciation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deep homology and the origins of evolutionary novelty.

            Do new anatomical structures arise de novo, or do they evolve from pre-existing structures? Advances in developmental genetics, palaeontology and evolutionary developmental biology have recently shed light on the origins of some of the structures that most intrigued Charles Darwin, including animal eyes, tetrapod limbs and giant beetle horns. In each case, structures arose by the modification of pre-existing genetic regulatory circuits established in early metazoans. The deep homology of generative processes and cell-type specification mechanisms in animal development has provided the foundation for the independent evolution of a great variety of structures.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Evolution of Animal Weapons

                Bookmark

                Author and article information

                Journal
                27162357
                4889385
                10.1073/pnas.1601505113

                allometry,threshold trait,modularity,developmental plasticity,co-option

                Comments

                Comment on this article