48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      TRANSCRANIAL AMELIORATION OF INFLAMMATION AND CELL DEATH FOLLOWING BRAIN INJURY

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function 1, 2 . At present no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain novel insights into TBI pathogenesis, we developed a novel closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic receptor dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We additionally show that the skull bone is permeable to small molecular weight compounds and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results provide novel insights into the acute cellular response to TBI and a means to locally deliver therapeutic compounds to the site of injury.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Thinned-skull cranial window technique for long-term imaging of the cortex in live mice.

          Imaging neurons, glia and vasculature in the living brain has become an important experimental tool for understanding how the brain works. Here we describe in detail a protocol for imaging cortical structures at high optical resolution through a thinned-skull cranial window in live mice using two-photon laser scanning microscopy (TPLSM). Surgery can be performed within 30-45 min and images can be acquired immediately thereafter. The procedure can be repeated multiple times allowing longitudinal imaging of the cortex over intervals ranging from days to years. Imaging through a thinned-skull cranial window avoids exposure of the meninges and the cortex, thus providing a minimally invasive approach for studying structural and functional changes of cells under normal and pathological conditions in the living brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Free radical pathways in CNS injury.

            Free radicals are highly reactive molecules implicated in the pathology of traumatic brain injury and cerebral ischemia, through a mechanism known as oxidative stress. After brain injury, reactive oxygen and reactive nitrogen species may be generated through several different cellular pathways, including calcium activation of phospholipases, nitric oxide synthase, xanthine oxidase, the Fenton and Haber-Weiss reactions, by inflammatory cells. If cellular defense systems are weakened, increased production of free radicals will lead to oxidation of lipids, proteins, and nucleic acids, which may alter cellular function in a critical way. The study of each of these pathways may be complex and laborious since free radicals are extremely short-lived. Recently, genetic manipulation of wild-type animals has yielded species that over- or under-express genes such as, copper-zinc superoxide dismutase, manganese superoxide dismutase, nitric oxide synthase, and the Bcl-2 protein. The introduction of the species has improved the understanding of oxidative stress. We conclude here that substantial experimental data links oxidative stress with other pathogenic mechanisms such as excitotoxicity, calcium overload, mitochondrial cytochrome c release, caspase activation, and apoptosis in central nervous system (CNS) trauma and ischemia, and that utilization of genetically manipulated animals offers a unique possibility to elucidate the role of free radicals in CNS injury in a molecular fashion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex.

              Determining the degree of synapse formation and elimination is essential for understanding the structural basis of brain plasticity and pathology. We show that in vivo imaging of dendritic spine dynamics through an open-skull glass window, but not a thinned-skull window, is associated with high spine turnover and substantial glial activation during the first month after surgery. These findings help to explain existing discrepancies in the degree of dendritic spine plasticity observed in the mature cortex.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                11 February 2014
                08 December 2013
                9 January 2014
                09 July 2014
                : 505
                : 7482
                : 223-228
                Affiliations
                National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
                Author notes
                Corresponding author: Dorian B. McGavern, Ph.D., NIH / NINDS, 10 Center Drive, Bethesda, MD 20892, Phone: (301) 443-7949, mcgavernd@ 123456mail.nih.gov
                Article
                NIHMS533712
                10.1038/nature12808
                3930079
                24317693
                bb2400f3-5113-4d99-9beb-730e7cec739e

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article