40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exome Sequencing Identifies Rare Deleterious Mutations in DNA Repair Genes FANCC and BLM as Potential Breast Cancer Susceptibility Alleles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

          Author Summary

          Currently, we know that a woman who inherits a fault in one of two genes, BRCA1 or BRCA2, has a high risk of developing both breast and ovarian cancer. However, such faults account for only half of all families with a strong family history of breast cancer. In this study, we planned to identify new genes that may be associated with an increased risk of developing breast cancer by looking for faults in every gene in the blood DNA of multiple women with breast cancer from large families with a strong family history of the condition over multiple generations. We can then track which gene fault is present in all the women with breast cancer in that family and in other families, but is not found in the women who did not develop breast cancer or have no family history. Using this approach, we identified faults in two genes, Fanconi C and Bloom helicase, in six families. Faults in these genes appear to increase the risk of developing breast cancer. Both these genes work in a similar way as BRCA1 and BRCA2, and this highlights the importance of these functions in preventing breast cancer. Further studies need to be done to confirm our results.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.

          A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods. Probable predisposing mutations have been detected in five of eight kindreds presumed to segregate BRCA1 susceptibility alleles. The mutations include an 11-base pair deletion, a 1-base pair insertion, a stop codon, a missense substitution, and an inferred regulatory mutation. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. This protein contains a zinc finger domain in its amino-terminal region, but is otherwise unrelated to previously described proteins. Identification of BRCA1 should facilitate early diagnosis of breast and ovarian cancer susceptibility in some individuals as well as a better understanding of breast cancer biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium.

            The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16% (95% confidence interval [CI] 6%-28%), suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority of families with male and female breast cancer were due to BRCA2 (76%). The largest proportion (67%) of families due to other genes was found in families with four or five cases of female breast cancer only. These estimates were not substantially affected either by changing the assumed penetrance model for BRCA1 or by including or excluding BRCA1 mutation data. Among those families with disease due to BRCA1 that were tested by one of the standard screening methods, mutations were detected in the coding sequence or splice sites in an estimated 63% (95% CI 51%-77%). The estimated sensitivity was identical for direct sequencing and other techniques. The penetrance of BRCA2 was estimated by maximizing the LOD score in BRCA2-mutation families, over all possible penetrance functions. The estimated cumulative risk of breast cancer reached 28% (95% CI 9%-44%) by age 50 years and 84% (95% CI 43%-95%) by age 70 years. The corresponding ovarian cancer risks were 0.4% (95% CI 0%-1%) by age 50 years and 27% (95% CI 0%-47%) by age 70 years. The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in BRCA2 carriers <50 years of age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene.

              Through complete sequencing of the protein-coding genes in a patient with familial pancreatic cancer, we identified a germline, truncating mutation in PALB2 that appeared responsible for this patient's predisposition to the disease. Analysis of 96 additional patients with familial pancreatic cancer revealed three distinct protein-truncating mutations, thereby validating the role of PALB2 as a susceptibility gene for pancreatic cancer. PALB2 mutations have been previously reported in patients with familial breast cancer, and the PALB2 protein is a binding partner for BRCA2. These results illustrate that complete, unbiased sequencing of protein-coding genes can lead to the identification of a gene responsible for a hereditary disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2012
                September 2012
                27 September 2012
                : 8
                : 9
                : e1002894
                Affiliations
                [1 ]Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
                [2 ]Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
                [3 ]Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
                [4 ]Molecular Genomics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
                [5 ]Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
                [6 ]Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
                [7 ]Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria, Australia
                [8 ]Familial Cancer Centre, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
                [9 ]Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
                [10 ]Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
                University of Washington, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IGC GM ERT. Performed the experiments: ERT GLR RWT SMR DYHC YCA. Analyzed the data: ERT MAD JL JE GKP DRB. Contributed reagents/materials/analysis tools: kConFab HT GM PAJ AHT. Wrote the paper: ERT IGC AHT.

                Article
                PGENETICS-D-12-00361
                10.1371/journal.pgen.1002894
                3459953
                23028338
                bb3c4ecb-fbee-4f67-a47f-a6bb24f93fd7
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 February 2012
                : 28 June 2012
                Page count
                Pages: 8
                Funding
                This study was supported by grants from the Victorian Government, through Victorian Cancer Agency ( http://www.victoriancanceragency.org.au/) funding and a Priority-driven Collaborative Cancer Research Scheme grant from Cancer Australia ( http://canceraustralia.gov.au/) and the National Breast Cancer Foundation ( www.nbcf.org.au/) (#628610 and #628333). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Heredity
                Trait Locus
                Human Genetics
                Genetic Association Studies
                Genetic Testing
                Cancer Genetics
                Genetic Screens
                Genetics of Disease
                Genomics
                Genome Analysis Tools
                Genetic Screens
                Genome Sequencing

                Genetics
                Genetics

                Comments

                Comment on this article