40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar–Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification.

          P. Thomas (2003)
          The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies.

            Dysfunction in the monoamine systems of serotonin (5-HT), norepinephrine (NE) and dopamine (DA) may causally be related to major depressive disorder (MDD). Monoamine depletion studies investigate the direct effects of monoamines on mood. Acute tryptophan depletion (ATD) or para-chlorophenylalanine (PCPA) deplete 5-HT, acute phenylalanine/tyrosine depletion (APTD) or alpha-methyl-para-tyrosine (AMPT) deplete NE/DA. Available depletion studies found conflicting results in heterogeneous populations: healthy controls, patients with previous MDD in remission and patients suffering from MDD. The decrease in mood after 5-HT and NE/DA depletion in humans is reviewed and quantified. Systematic search of MEDLINE and EMBASE (1966-October 2006) and cross-references was carried out. Randomized studies applying ATD, PCPA, APTD or AMPT vs control depletion were included. Pooling of results by meta-analyses was stratified for studied population and design of the study (within or between subjects). Seventy-three ATD, 2 PCPA, 10 APTD and 8 AMPT studies were identified of which 45 ATD and 8 APTD studies could be meta-analyzed. 5-HT or NE/DA depletion did not decrease mood in healthy controls. 5-HT or NE/DA depletion slightly lowered mood in healthy controls with a family history of MDD. In drug-free patients with MDD in remission, a moderate mood decrease was found for ATD, without an effect of APTD. ATD induced relapse in patients with MDD in remission who used serotonergic antidepressants. In conclusion, monoamine depletion studies demonstrate decreased mood in subjects with a family history of MDD and in drug-free patients with MDD in remission, but do not decrease mood in healthy humans. Although depletion studies usefully investigate the etiological link of 5-HT and NE with MDD, they fail to demonstrate a causal relation. They presumably clarify a vulnerability trait to become depressed. Directions for further investigation of this vulnerability trait are proposed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Causal relationship between stressful life events and the onset of major depression.

              Stressful life events are associated with the onset of episodes of major depression. However, exposure to stressful life events is influenced by genetic factors, and these factors are correlated with those that predispose to major depression. The aim of this study was to clarify the degree to which stressful life events cause major depression. The authors assessed the occurrence of 15 classes of stressful life events and the onset of DSM-III-R major depression over a 1-year period in female twins ascertained from a population-based registry. The sample contained 24,648 person-months and 316 onsets of major depression. Stressful life events were individually rated on contextual threat and dependence (the degree to which the stressful life event could have resulted from the respondent's behavior). The nature of the relationship between stressful life events and major depression was tested by 1) discrete-time survival analysis examining the relationship between dependence and the depressogenic effect of stressful life events and 2) a co-twin control analysis. While independent stressful life events were significantly associated with onsets of depression, when level of threat was controlled, the association was significantly stronger for dependent events. The odds ratio for onset of major depression in the month of a stressful life event was 5.64 in all subjects, 4.52 within dizygotic pairs, and 3.58 within monozygotic pairs. Stressful life events have a substantial causal relationship with the onset of episodes of major depression. However, about one-third of the association between stressful life events and onsets of depression is noncausal, since individuals predisposed to major depression select themselves into high-risk environments.
                Bookmark

                Author and article information

                Journal
                Mol Psychiatry
                Molecular Psychiatry
                Nature Publishing Group
                1359-4184
                1476-5578
                January 2012
                16 November 2010
                : 17
                : 1
                : 49-61
                Affiliations
                [1 ]simpleDepartment of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University , Chicago, IL, USA
                [2 ]simpleThe Jackson Laboratory , Bar Harbor, ME, USA
                Author notes
                [* ]simpleDepartment of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University , Chicago, IL 60611, USA. E-mail: e-redei@ 123456northwestern.edu
                Article
                mp2010119
                10.1038/mp.2010.119
                3117129
                21079605
                bb3d9f51-8209-4232-ac57-a3a137d4f38f
                Copyright © 2012 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 06 May 2010
                : 05 October 2010
                : 11 October 2010
                Categories
                Original Article

                Molecular medicine
                animal models,depression,microarray,selective breeding,wistar kyoto rat
                Molecular medicine
                animal models, depression, microarray, selective breeding, wistar kyoto rat

                Comments

                Comment on this article