38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          Imaging iron stores in the brain using magnetic resonance imaging.

          For the last century, there has been great physiological interest in brain iron and its role in brain function and disease. It is well known that iron accumulates in the brain for people with Huntington's disease, Parkinson's disease, Alzheimer's disease, multiple sclerosis, chronic hemorrhage, cerebral infarction, anemia, thalassemia, hemochromatosis, Hallervorden-Spatz, Down syndrome, AIDS and in the eye for people with macular degeneration. Measuring the amount of nonheme iron in the body may well lead to not only a better understanding of the disease progression but an ability to predict outcome. As there are many forms of iron in the brain, separating them and quantifying each type have been a major challenge. In this review, we present our understanding of attempts to measure brain iron and the potential of doing so with magnetic resonance imaging. Specifically, we examine the response of the magnetic resonance visible iron in tissue that produces signal changes in both magnitude and phase images. These images seem to correlate with brain iron content, perhaps ferritin specifically, but still have not been successfully exploited to accurately and precisely quantify brain iron. For future quantitative studies of iron content we propose four methods: correlating R2' and phase to iron content; applying a special filter to the phase to obtain a susceptibility map; using complex analysis to extract the product of susceptibility and volume content of the susceptibility source; and using early and late echo information to separately predict susceptibility and volume content.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains.

            The regional distributions of iron, copper, zinc, magnesium, and calcium in parkinsonian brains were compared with those of matched controls. In mild Parkinson's disease (PD), there were no significant differences in the content of total iron between the two groups, whereas there was a significant increase in total iron and iron (III) in substantia nigra of severely affected patients. Although marked regional distributions of iron, magnesium, and calcium were present, there were no changes in magnesium, calcium, and copper in various brain areas of PD. The most notable finding was a shift in the iron (II)/iron (III) ratio in favor of iron (III) in substantia nigra and a significant increase in the iron (III)-binding, protein, ferritin. A significantly lower glutathione content was present in pooled samples of putamen, globus pallidus, substantia nigra, nucleus basalis of Meynert, amygdaloid nucleus, and frontal cortex of PD brains with severe damage to substantia nigra, whereas no significant changes were observed in clinicopathologically mild forms of PD. In all these regions, except the amygdaloid nucleus, ascorbic acid was not decreased. Reduced glutathione and the shift of the iron (II)/iron (III) ratio in favor of iron (III) suggest that these changes might contribute to pathophysiological processes underlying PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia.

              Levels of iron, copper, zinc and manganese were measured by inductively coupled plasma spectroscopy in frozen postmortem brain tissue from patients with Parkinson's disease (PD), progressive supranuclear palsy (PSP), multiple system atrophy with strionigral degeneration (MSA), and Huntington's disease (HD) compared with control subjects. Total iron levels were found to be elevated in the areas of basal ganglia showing pathological change in these disorders. In particular, total iron content was increased in substantia nigra in PD, PSP and MSA, but not in HD. Total iron levels in the striatum (putamen and/or caudate nucleus) were increased in PSP, MSA and HD but not in PD. Total iron levels were decreased in the globus pallidus in PD. There were no consistent alterations of manganese levels in basal ganglia structures in any of the diseases studied. Copper levels were decreased in the substantia nigra in PD, and in the cerebellum in PSP, and were elevated in the putamen and possibly substantia nigra in HD. Zinc levels were only increased in PD, in substantia nigra and in caudate nucleus and lateral putamen. Levels of the iron binding protein ferritin were measured in the same patient groups using a radio-immunoassay technique. Increased iron levels in basal ganglia were generally associated with normal or elevated levels of ferritin immunoreactivity, for example, the substantia nigra in PSP and possibly MSA, and in putamen in MSA. The exception was PD where there was a generalized reduction in brain ferritin immunoreactivity, even in the substantia nigra. An increase in total iron content appears to be a response to neurodegeneration in affected basal ganglia regions in a number of movement disorders. However, only in PD was there an increased total iron level, decreased ferritin content, decreased copper content, and an increased zinc concentration in substantia nigra. These findings suggest an alteration of iron handling in the substantia nigra in PD. Depending on the form in which the excess iron load exists in nigra in PD, it may contribute to the neurodegenerative process.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                14 January 2016
                January 2016
                : 17
                : 1
                : 100
                Affiliations
                [1 ]Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA; yw233@ 123456cornell.edu
                [2 ]Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA; david.pitt@ 123456yale.edu
                [3 ]Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
                Author notes
                [* ]Correspondence: cas2050@ 123456med.cornell.edu ; Tel.: +1-646-962-2637; Fax: +1-212-746-4189
                Article
                ijms-17-00100
                10.3390/ijms17010100
                4730342
                26784172
                bb485e28-3edb-4dfb-9026-bc0e1141e6ac
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 May 2015
                : 07 January 2016
                Categories
                Review

                Molecular biology
                ms lesion,quantitative susceptibility mapping (qsm),deep grey matter (dgm),mri

                Comments

                Comment on this article