8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.

          eLife digest

          Many people find it easy to follow a conversation while on a busy city street, but this seemingly simple task requires sophisticated processing of sounds. The brain must accurately distinguish speech sounds from background noise, even though the volumes and pitches of those sounds overlap. To make this possible, neurons that process sounds continually adjust the relationship between the volume of a sound and the size of their response. This helps the brain to distinguish more precisely between different sounds, but how this works remains unclear.

          Zinc ions form part of almost 3,000 different enzymes and regulatory proteins, and also help neurons to communicate with one another at junctions called synapses. Changes to the amount of zinc ions at the synapses have been seen in disorders including depression and Alzheimer’s disease. By imaging the brains of mice, Anderson, Kumar et al. now show that zinc ions affect how the healthy brain processes sounds.

          Treating the mice with a substance that temporarily mops up zinc ions changed how neurons responded to sounds of different volumes. This revealed that zinc ions cause excitatory neurons, which activate neighboring cells, to increase their responses to sounds. Conversely, zinc ions cause inhibitory neurons, which reduce the activity of other cells, to decrease their responses to sounds. The overall effect is to change the balance of excitatory and inhibitory activity in areas of the brain that process sound. Anderson, Kumar et al. propose that these changes make it easier for the brain to process and distinguish different sounds as the environment changes from quiet to loud and vice versa.

          As well as revealing a role for zinc ions in normal hearing, these findings may help us to understand disorders such as tinnitus and auditory neuropathies (conditions where the nerve that carries signals from the ear to the brain is damaged, leading to hearing loss). Both tinnitus and auditory neuropathies involve changes in the brain’s ability to increase or decrease its responses to sounds with particular characteristics – processes that may involve the activity of zinc ions.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The neocortical circuit: themes and variations.

          Similarities in neocortical circuit organization across areas and species suggest a common strategy to process diverse types of information, including sensation from diverse modalities, motor control and higher cognitive processes. Cortical neurons belong to a small number of main classes. The properties of these classes, including their local and long-range connectivity, developmental history, gene expression, intrinsic physiology and in vivo activity patterns, are remarkably similar across areas. Each class contains subclasses; for a rapidly growing number of these, conserved patterns of input and output connections are also becoming evident. The ensemble of circuit connections constitutes a basic circuit pattern that appears to be repeated across neocortical areas, with area- and species-specific modifications. Such 'serially homologous' organization may adapt individual neocortical regions to the type of information each must process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical interneurons that specialize in disinhibitory control

            In the mammalian cerebral cortex, the diversity of interneuronal subtypes underlies a division of labor subserving distinct modes of inhibitory control 1–7 . A unique mode of inhibitory control may be provided by inhibitory neurons that specifically suppress the firing of other inhibitory neurons. Such disinhibition could lead to the selective amplification of local processing and serve the important computational functions of gating and gain modulation 8,9 . Although several interneuron populations are known to target other interneurons to varying degrees 10–15 , little is known about interneurons specializing in disinhibition and their in vivo function. Here we show that a class of interneurons that express vasoactive intestinal polypeptide (VIP) mediates disinhibitory control in multiple areas of neocortex and is recruited by reinforcement signals. By combining optogenetic activation with single cell recordings, we examined the functional role of VIP interneurons in awake mice, and investigated the underlying circuit mechanisms in vitro in auditory and medial prefrontal cortices. We identified a basic disinhibitory circuit module in which activation of VIP interneurons transiently suppresses primarily somatostatin- and a fraction of parvalbumin-expressing inhibitory interneurons that specialize in the control of the input and output of principal cells, respectively 3,6,16,17 . During the performance of an auditory discrimination task, reinforcement signals (reward and punishment) strongly and uniformly activated VIP neurons in auditory cortex, and in turn VIP recruitment increased the gain of a functional subpopulation of principal neurons. These results reveal a specific cell-type and microcircuit underlying disinhibitory control in cortex and demonstrate that it is activated under specific behavioural conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neurobiology of zinc in health and disease.

              The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                09 September 2017
                2017
                : 6
                : e29893
                Affiliations
                [1 ]deptDepartment of Otolaryngology University of Pittsburgh PittsburghUnited States
                [2 ]deptThe Third Xiangya Hospital Central South University ChangshaChina
                University of Oxford United Kingdom
                University of Oxford United Kingdom
                Author notes
                [‡]

                Department of Physiology, Pharmacology, and Neuroscience, Blanchette Rockefeller Neurosciences Institute, Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, United States.

                [†]

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0003-3353-0182
                http://orcid.org/0000-0003-4583-145X
                Article
                29893
                10.7554/eLife.29893
                5876454
                28887876
                bb56483e-5554-4120-8841-fd923a4cf127
                © 2017, Anderson et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 23 June 2017
                : 04 September 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000055, National Institute on Deafness and Other Communication Disorders;
                Award ID: R01-DC007905
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000055, National Institute on Deafness and Other Communication Disorders;
                Award ID: F32-DC013734
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Neuroscience
                Custom metadata
                Synaptic zinc is a novel modulator of cortical sound processing - a modulator that increases the gain of principal neurons, but reduces the gain of interneurons.

                Life sciences
                auditory cortex,zinc,cortical gain,sound processing,principal neurons,interneurons,mouse
                Life sciences
                auditory cortex, zinc, cortical gain, sound processing, principal neurons, interneurons, mouse

                Comments

                Comment on this article