38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Role of Changes in Extracellular Matrix of Cartilage in the Presence of Inflammation on the Pathology of Osteoarthritis

      review-article
      1 , 1 , 2 , *
      BioMed Research International
      Hindawi Publishing Corporation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is a degenerative disease that affects various tissues surrounding joints such as articular cartilage, subchondral bone, synovial membrane, and ligaments. No therapy is currently available to completely prevent the initiation or progression of the disease partly due to poor understanding of the mechanisms of the disease pathology. Cartilage is the main tissue afflicted by OA, and chondrocytes, the sole cellular component in the tissue, actively participate in the degeneration process. Multiple factors affect the development and progression of OA including inflammation that is sustained during the progression of the disease and alteration in biomechanical conditions due to wear and tear or trauma in cartilage. During the progression of OA, extracellular matrix (ECM) of cartilage is actively remodeled by chondrocytes under inflammatory conditions. This alteration of ECM, in turn, changes the biomechanical environment of chondrocytes, which further drives the progression of the disease in the presence of inflammation. The changes in ECM composition and structure also prevent participation of mesenchymal stem cells in the repair process by inhibiting their chondrogenic differentiation. This review focuses on how inflammation-induced ECM remodeling disturbs cellular activities to prevent self-regeneration of cartilage in the pathology of OA.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis cartilage histopathology: grading and staging.

          Current osteoarthritis (OA) histopathology assessment methods have difficulties in their utility for early disease, as well as their reproducibility and validity. Our objective was to devise a more useful method to assess OA histopathology that would have wide application for clinical and experimental OA assessment and would become recognized as the standard method. An OARSI Working Group deliberated on principles, standards and features for an OA cartilage pathology assessment system. Using current knowledge of the pathophysiology of OA morphologic features, a proposed system was presented at OARSI 2000. Subsequently, this was widely circulated for comments amongst experts in OA pathology. An OA cartilage pathology assessment system based on six grades, which reflect depth of the lesion and four stages reflecting extent of OA over the joint surface was developed. The OARSI cartilage OA histopathology grading system appears consistent and simple to apply. Further studies are required to confirm the system's utility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

            The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Collagens—structure, function, and biosynthesis

              K Gelse (2003)
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                28 August 2013
                : 2013
                : 284873
                Affiliations
                1Department of Bioengineering, University of California, 900 University Avenue, Riverside, CA 92521, USA
                2Center for Bioengineering Research, University of California, Riverside, CA 92521, USA
                Author notes

                Academic Editor: Martin Götte

                Author information
                http://orcid.org/0000-0003-4682-6900
                http://orcid.org/0000-0001-5117-8958
                Article
                10.1155/2013/284873
                3771246
                24069595
                bb5ce4d6-7bb2-443f-a957-2106fc70f91c
                Copyright © 2013 M. Maldonado and J. Nam.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 June 2013
                : 27 July 2013
                : 29 July 2013
                Categories
                Review Article

                Comments

                Comment on this article