23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new species of Trichoderma hypoxylon harbours abundant secondary metabolites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogenetic species recognition and species concepts in fungi.

          The operational species concept, i.e., the one used to recognize species, is contrasted to the theoretical species concept. A phylogenetic approach to recognize fungal species based on concordance of multiple gene genealogies is compared to those based on morphology and reproductive behavior. Examples where Phylogenetic Species Recognition has been applied to fungi are reviewed and concerns regarding Phylogenetic Species Recognition are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            European species of Hypocrea Part I. The green-spored species

            At present 75 species of Hypocrea have been identified in temperate Europe. Nineteen green-spored species and their Trichoderma asexual states are here described in detail. Extensive searches for Hypocrea teleomorphs in 14 European countries, with emphasis on Central Europe, yielded more than 620 specimens within five years. The morphology of fresh and dry stromata was studied. In addition, available types of species described from Europe were examined. Cultures were prepared from ascospores and used to study the morphology of cultures and anamorphs, to determine growth rates, and to extract DNA that was used for amplification and sequencing of three genetic markers. ITS was used for identification, while RNA polymerase II subunit b (rpb2) and translation elongation factor 1 alpha (tef1) were analyzed for phylogenetic reconstruction of the genus. Several unexpected findings resulted from this project: 1) The previous view that only a small number of Trichoderma species form a teleomorph is erroneous. 2) All expectations concerning the number of species in Europe are by far exceeded. Seventy-five species of Hypocrea, two species of Protocrea, and Arachnocrea stipata, are herein identified in temperate Europe, based on the ITS identification routine using fresh material, on species described earlier without molecular data and on species recently described but not collected during this project. 3) Current data suggest that the biodiversity of Hypocrea / Trichoderma above soil exceeds the number of species isolated from soil. 4) The number of Trichoderma species forming hyaline conidia has been considered a small fraction. In Europe, 26 species of those forming teleomorphs produce hyaline conidia, while 42 green-conidial species are known. Three of the detected Hypocrea species do not form an anamorph in culture, while the anamorph is unknown in four species, because they have never been cultured. This work is a preliminary account of Hypocrea and their Trichoderma anamorphs in Europe. Of the hyaline-spored species, H. minutispora is by far the most common species in Europe, while of the green-spored species this is H. strictipilosa. General ecology of Hypocrea is discussed. Specific associations, either with host fungi or trees have been found, but the majority of species seems to be necrotrophic on diverse fungi on wood and bark. The taxonomy of the genus will be treated in two parts. In this first part 19 species of Hypocrea with green ascospores, including six new teleomorph and five new anamorph species, are described in detail. All green-spored species belong to previously recognised clades, except H. spinulosa, which forms the new Spinulosa Clade with two additional new species, and H. fomiticola, which belongs to the Semiorbis Clade and forms effuse to large subpulvinate stromata on Fomes fomentarius, a trait new for species with green ascospores. Anamorph names are established prospectively in order to provide a basis for possible policy alterations towards their use for holomorphs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Secondary metabolism in Trichoderma--a genomic perspective.

              Trichoderma spp. are a rich source of secondary metabolites (SMs). The recent publication of the genome sequences of three Trichoderma spp. has revealed a vast repertoire of genes putatively involved in the biosynthesis of SMs, such as non-ribosomal peptides, polyketides, terpenoids and pyrones. Interestingly, the genomes of the mycoparasitic species Trichoderma virens and Trichoderma atroviride are enriched in secondary metabolism-related genes compared with the biomass-degrading Trichoderma reesei: 18 and 18 polyketide synthases compared with 11; 28 and 16 non-ribosomal peptide synthetases compared with 10, respectively. All three species produce a special class of non-ribosomally synthesized peptides known as peptaibols, containing non-proteinogenic amino acids (particularly α-aminoisobutyric acid). In common with other filamentous ascomycetes, Trichoderma spp. may require siderophores (also produced by non-ribosomal peptide synthetases) to grow in iron-poor conditions and to compete with their hosts for available iron. Two generalizations can be made about fungal SM genes: they are often found in clusters, and many are not expressed under standard laboratory conditions. This has made it difficult to identify the compounds. Trichoderma, in particular, interacts with other microbes in the soil and with plant roots in the rhizosphere. A detailed metabolomic-genomic study would eventually unravel the roles of many of these SMs in natural ecosystems. Novel genetic tools developed recently, combined with biological understanding of the function of SMs as toxins or signals, should lead to 'awakening' of these 'silent' clusters. Knowledge of the SM repertoire should precede application of Trichoderma strains for biocontrol: some metabolites could be toxic to plants and their consumers, and thus should be avoided. Others could be beneficial, antagonizing pathogens or inducing resistance in crop plants.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                21 November 2016
                2016
                : 6
                : 37369
                Affiliations
                [1 ]State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CASIM) , No. 3 Park 1, West Beichen Road, Chaoyang District, Beijing 100101, China
                [2 ]Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University , Chiang Rai, 57100, Thailand
                [3 ]Joint Laboratory of Applied Microbial Technology, CASIM and Institute of Biology limited Liability Company, Henan Academy of Sciences , Zheng Zhou, 45002, China
                Author notes
                [*]

                Present address: National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.

                Article
                srep37369
                10.1038/srep37369
                5116760
                27869187
                bb6e9239-09bd-474d-bfaa-e236b7a79c3b
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 13 May 2016
                : 27 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article