13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Serotonin, also known as 5-hydroxytryptamine (5-HT) is a signaling mediator that regulates emotion, behavior, and cognition. Previous studies have focused more on the roles of 5-HT in the central nervous system (CNS). However, 5-HT also shares a strong relationship with the pathological cases of tumor, inflammation, and pathogen infection. 5-HT participates in tumor cell migration, metastatic dissemination, and angiogenesis. In addition, 5-HT affects immune regulation via different 5-HT receptors (5-HTRs) expressed immune cells, including both innate and adaptive immune system. Recently, drugs targeting at 5-HT signaling were tested to be beneficial in mouse models and clinical trials of multiple sclerosis (MS) and inflammatory bowel disease (IBD). Thus, it is reasonable to assume that 5-HT participates in the pathogenesis of autoimmune diseases. However, the underlying mechanism by 5-HT modulates the development of autoimmune diseases has not been fully understood. Based on our previous studies and pertinent literature, we provide circumstantial evidence for an essential role of 5-HT, especially the regulation of 5-HT on immune cells in the pathogenesis of autoimmune diseases, which may provide a new point cut for the treatment of autoimmune diseases.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnosis and Management of Rheumatoid Arthritis

          Rheumatoid arthritis (RA) occurs in about 5 per 1000 people and can lead to severe joint damage and disability. Significant progress has been made over the past 2 decades regarding understanding of disease pathophysiology, optimal outcome measures, and effective treatment strategies, including the recognition of the importance of diagnosing and treating RA early.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.

            Activation of naive CD4(+) T-helper cells results in the development of at least two distinct effector populations, Th1 and Th2 cells. Th1 cells produce cytokines (interferon (IFN)-gamma, interleukin (IL)-2, tumour-necrosis factor (TNF)-alpha and lymphotoxin) that are commonly associated with cell-mediated immune responses against intracellular pathogens, delayed-type hypersensitivity reactions, and induction of organ-specific autoimmune diseases. Th2 cells produce cytokines (IL-4, IL-10 and IL-13) that are crucial for control of extracellular helminthic infections and promote atopic and allergic diseases. Although much is known about the functions of these two subsets of T-helper cells, there are few known surface molecules that distinguish between them. We report here the identification and characterization of a transmembrane protein, Tim-3, which contains an immunoglobulin and a mucin-like domain and is expressed on differentiated Th1 cells. In vivo administration of antibody to Tim-3 enhances the clinical and pathological severity of experimental autoimmune encephalomyelitis (EAE), a Th1-dependent autoimmune disease, and increases the number and activation level of macrophages. Tim-3 may have an important role in the induction of autoimmune diseases by regulating macrophage activation and/or function.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                11 February 2020
                2020
                : 11
                : 186
                Affiliations
                [1] 1Department of Hepatology, The First Hospital of Jilin University, Jilin University , Changchun, China
                [2] 2Central Laboratory, The First Hospital of Jilin University, Jilin University , Changchun, China
                [3] 3Intensive Care Unit, The First Hospital of Jilin University, Jilin University , Changchun, China
                Author notes

                Edited by: Carlo Riccardi, University of Perugia, Italy

                Reviewed by: Howard A. Young, National Cancer Institute at Frederick, United States; Yeonseok Chung, Seoul National University, South Korea

                *Correspondence: Pujun Gao gpj0411@ 123456163.com

                This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.00186
                7026253
                32117308
                bb6f0015-7406-466b-9922-b10ce3c597bb
                Copyright © 2020 Wan, Ding, Wang, Han and Gao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 November 2019
                : 23 January 2020
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 129, Pages: 12, Words: 10153
                Categories
                Immunology
                Review

                Immunology
                5-ht,5-ht receptor,autoimmune disease,immune cells,serotonin
                Immunology
                5-ht, 5-ht receptor, autoimmune disease, immune cells, serotonin

                Comments

                Comment on this article