145
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many tumour cells have elevated rates of glucose uptake but reduced rates of oxidative phosphorylation. This persistence of high lactate production by tumours in the presence of oxygen, known as aerobic glycolysis, was first noted by Otto Warburg more than 75 yr ago. How tumour cells establish this altered metabolic phenotype and whether it is essential for tumorigenesis is as yet unknown. Here we show that a single switch in a splice isoform of the glycolytic enzyme pyruvate kinase is necessary for the shift in cellular metabolism to aerobic glycolysis and that this promotes tumorigenesis. Tumour cells have been shown to express exclusively the embryonic M2 isoform of pyruvate kinase. Here we use short hairpin RNA to knockdown pyruvate kinase M2 expression in human cancer cell lines and replace it with pyruvate kinase M1. Switching pyruvate kinase expression to the M1 (adult) isoform leads to reversal of the Warburg effect, as judged by reduced lactate production and increased oxygen consumption, and this correlates with a reduced ability to form tumours in nude mouse xenografts. These results demonstrate that M2 expression is necessary for aerobic glycolysis and that this metabolic phenotype provides a selective growth advantage for tumour cells in vivo.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Pyruvate kinase M2 is a phosphotyrosine-binding protein.

          Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pyruvate kinase type M2 and its role in tumor growth and spreading.

            Proliferating cells and tumor cells in particular express the pyruvate kinase isoenzyme type M2 (M2-PK). Within the tumor metabolome M2-PK regulates the proportions of glucose carbons that are channelled to synthetic processes (inactive dimeric form) or used for glycolytic energy production (highly active tetrameric form, a component of the glycolytic enzyme complex). In tumor cells, the dimeric form of M2-PK (Tumor M2-PK) is always predominant. The dimerization is caused by direct interaction of M2-PK with certain oncoproteins. The switch between the tetrameric and dimeric form of M2-PK allows tumor cells to survive in environments with varying oxygen und nutrient supply.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways.

              Loss of PTEN function leads to activation of phosphoinositide 3-kinase (PI3K) signaling and Akt. Clinical trials are now testing whether mammalian target of rapamycin (mTOR) inhibition is useful in treating PTEN-null cancers. Here, we report that mTOR inhibition induced apoptosis of epithelial cells and the complete reversal of a neoplastic phenotype in the prostate of mice expressing human AKT1 in the ventral prostate. Induction of cell death required the mitochondrial pathway, as prostate-specific coexpression of BCL2 blocked apoptosis. Thus, there is an mTOR-dependent survival signal required downstream of Akt. Bcl2 expression, however, only partially restored intraluminal cell growth in the setting of mTOR inhibition. Expression profiling showed that Hif-1 alpha targets, including genes encoding most glycolytic enzymes, constituted the dominant transcriptional response to AKT activation and mTOR inhibition. These data suggest that the expansion of AKT-driven prostate epithelial cells requires mTOR-dependent survival signaling and activation of HIF-1 alpha, and that clinical resistance to mTOR inhibitors may emerge through BCL2 expression and/or upregulation of HIF-1 alpha activity.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                March 2008
                March 2008
                : 452
                : 7184
                : 230-233
                Article
                10.1038/nature06734
                18337823
                bb781bad-656e-4094-8b14-1d30de384cab
                © 2008

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article