10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Remote-Sensing Image Compression Using Two-Dimensional Oriented Wavelet Transform

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Image coding using wavelet transform.

          A scheme for image compression that takes into account psychovisual features both in the space and frequency domains is proposed. This method involves two steps. First, a wavelet transform used in order to obtain a set of biorthogonal subclasses of images: the original image is decomposed at different scales using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required to describe the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vector quantized using a multiresolution codebook. To encode the wavelet coefficients, a noise shaping bit allocation procedure which assumes that details at high resolution are less visible to the human eye is proposed. In order to allow the receiver to recognize a picture as quickly as possible at minimum cost, a progressive transmission scheme is presented. It is shown that the wavelet transform is particularly well adapted to progressive transmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The curvelet transform for image denoising.

            We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a; trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High performance scalable image compression with EBCOT.

              D Taubman (2000)
              A new image compression algorithm is proposed, based on independent embedded block coding with optimized truncation of the embedded bit-streams (EBCOT). The algorithm exhibits state-of-the-art compression performance while producing a bit-stream with a rich set of features, including resolution and SNR scalability together with a "random access" property. The algorithm has modest complexity and is suitable for applications involving remote browsing of large compressed images. The algorithm lends itself to explicit optimization with respect to MSE as well as more realistic psychovisual metrics, capable of modeling the spatially varying visual masking phenomenon.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Geoscience and Remote Sensing
                IEEE Trans. Geosci. Remote Sensing
                Institute of Electrical and Electronics Engineers (IEEE)
                0196-2892
                1558-0644
                January 2011
                January 2011
                : 49
                : 1
                : 236-250
                Article
                10.1109/TGRS.2010.2056691
                bb8142b6-4fbc-4bca-95bc-7a9f9eab69ed
                © 2011
                History

                Comments

                Comment on this article