43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Aims

          Bee orchids ( Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus.

          Methods

          At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology.

          Key Results

          RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic.

          Conclusions

          The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Size and shape in ontogeny and phylogeny

            We present a quantitative method for describing how heterochronic changes in ontogeny relate to phyletic trends. This is a step towards creating a unified view of developmental biology and evolutionary ecology in the study of morphological evolution. Using this representation, we obtain a greatly simplified and logical scheme of classification. We believe that this scheme will be particularly useful in studying the data of paleontology and comparative morphology and in the analysis of processes leading to adaptive radiation. We illustrate this scheme by examples drawn from the literature and our own work.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications of next-generation sequencing to phylogeography and phylogenetics.

              This is a time of unprecedented transition in DNA sequencing technologies. Next-generation sequencing (NGS) clearly holds promise for fast and cost-effective generation of multilocus sequence data for phylogeography and phylogenetics. However, the focus on non-model organisms, in addition to uncertainty about which sample preparation methods and analyses are appropriate for different research questions and evolutionary timescales, have contributed to a lag in the application of NGS to these fields. Here, we outline some of the major obstacles specific to the application of NGS to phylogeography and phylogenetics, including the focus on non-model organisms, the necessity of obtaining orthologous loci in a cost-effective manner, and the predominate use of gene trees in these fields. We describe the most promising methods of sample preparation that address these challenges. Methods that reduce the genome by restriction digest and manual size selection are most appropriate for studies at the intraspecific level, whereas methods that target specific genomic regions (i.e., target enrichment or sequence capture) have wider applicability from the population level to deep-level phylogenomics. Additionally, we give an overview of how to analyze NGS data to arrive at data sets applicable to the standard toolkit of phylogeography and phylogenetics, including initial data processing to alignment and genotype calling (both SNPs and loci involving many SNPs). Even though whole-genome sequencing is likely to become affordable rather soon, because phylogeography and phylogenetics rely on analysis of hundreds of individuals in many cases, methods that reduce the genome to a subset of loci should remain more cost-effective for some time to come. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Ann Bot
                Ann. Bot
                annbot
                Annals of Botany
                Oxford University Press (US )
                0305-7364
                1095-8290
                January 2018
                09 January 2018
                09 January 2018
                : 121
                : 1
                : 85-105
                Affiliations
                [1 ]Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
                [2 ]Department of Botany, University of Debrecen, Egyetem, Debrecen, Hungary
                [3 ]MTA-DE ‘Lendület’ Evolutionary Phylogenomics Research Group, Egyetem, Debrecen, Hungary
                [4 ]Department of Botany and Biodiversity Research, University of Vienna, Rennweg, Vienna, Austria
                Author notes
                For correspondence. E-mail r.bateman@ 123456kew.org
                Article
                mcx129
                10.1093/aob/mcx129
                5786241
                29325077
                bb828b80-eae4-4fdd-a285-d6209b36f662
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 April 2017
                : 02 October 2017
                : 05 July 2017
                Page count
                Pages: 21
                Funding
                Funded by: Hungarian National Research Fund
                Award ID: OTKA PD109686
                Funded by: Austrian Science Fund 10.13039/501100002428
                Award ID: FWF Y661-B16
                Categories
                Original Articles

                Plant science & Botany
                biogeography,character mapping,coalescence,convergence,evolution,internal transcribed spacer,macrospecies,mediterranean,microspecies,morphology,ophrys,paedomorphosis,phylogenetics,plastid,pseudo-copulation,rad-seq,systematics

                Comments

                Comment on this article