6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Significant weight gain in patients with chronic myeloid leukemia after imatinib therapy

      , , , , , , ,
      Blood
      American Society of Hematology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice.

          The recent development of small-molecule tyrosine kinase (TK) inhibitors offers increasing opportunities for the treatment of autoimmune diseases. In this study, we investigated the potential of this new class of drugs to treat and cure type 1 diabetes (T1D) in the NOD mouse. Treatment of prediabetic and new onset diabetic mice with imatinib (Gleevec) prevented and reversed T1D. Similar results were observed with sunitinib (Sutent), an additional approved multikinase inhibitor, suggesting that the primary target of imatinib, c-Abl, was not essential in blocking disease in this model. Additional studies with another TK inhibitor, PLX647 (targeting c-Kit and c-Fms) or an anti-c-Kit mAb showed only marginal efficacy whereas a soluble form of platelet-derived growth factor receptor (PDGFR), PDGFRbetaIg, rapidly reversed diabetes. These findings strongly suggest that inhibition of PDGFR is critical to reverse diabetes and highlight a crucial role of inflammation in the development of T1D. These conclusions were supported by the finding that the adaptive immune system was not significantly affected by imatinib treatment. Finally, and most significantly, imatinib treatment led to durable remission after discontinuation of therapy at 10 weeks in a majority of mice. Thus, long-term efficacy and tolerance is likely to depend on inhibiting a combination of tyrosine kinases supporting the use of selective kinase inhibitors as a new, potentially very attractive approach for the treatment of T1D.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imatinib inhibits vascular smooth muscle proteoglycan synthesis and reduces LDL binding in vitro and aortic lipid deposition in vivo

            Abstract The ‘response to retention’ hypothesis of atherogenesis proposes that proteoglycans bind and retain low-density lipoproteins (LDL) in the vessel wall. Platelet-derived growth factor (PDGF) is strongly implicated in atherosclerosis and stimulates proteoglycan synthesis. Here we investigated the action of the PDGF receptor inhibitor imatinib on PDGF-mediated proteoglycan biosynthesis in vitro, lipid deposition in the aortic wall in vivo and the carotid artery ex vivo. In human vSMCs, imatinib inhibited PDGF mediated 35S-SO4 incorporation into proteoglycans by 31% (P < 0.01) and inhibited PDGF-mediated size increases in both chemically cleaved and xyloside associated glycosaminoglycan (GAG) chains by 19%, P < 0.05 and 27%, P < 0.05, respectively. Imatinib decreased PDGF stimulation of the 6:4 position sulphation ratio of disaccharides. The half maximal saturation value for LDL binding for proteoglycans from PDGF stimulated cells in the presence of imatinib was approximately 2.5-fold higher than for PDGF treatment alone. In high fat fed ApoE−/– mice, imatinib reduced total lipid staining area by ∼31% (P < 0.05). Carotid artery lipid accumulation in imatinib treated mice was also reduced. Furthermore, we demonstrate that imatinib inhibits phosphorylation of tyrosine 857, the autophosphorylation site of the PDGF receptor, in vSMCs. Thus imatinib inhibits GAG synthesis on vascular proteoglycans and reduces LDL binding in vitro and in vivo and this effect is mediated via the PDGF receptor. These findings validate a novel mechanism to prevent cardiac disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preadipocyte apoptosis is prevented by macrophage-conditioned medium in a PDGF-dependent manner.

              Obesity is associated with macrophage accumulation and inflammation in adipose tissue. Macrophage-secreted factors have been reported to inhibit the differentiation of preadipocytes into adipocytes and to modulate adipogenic extracellular matrix gene expression. To enlarge our understanding of macrophages and the scope of their interactions with preadipocytes, we investigated their effect on preadipocyte survival. Acute exposure of 3T3-L1 preadipocytes to J774A.1 macrophage-conditioned medium (MacCM) stimulated platelet-derived growth factor receptor (PDGFR) tyrosine phosphorylation by 4.1-fold. There were significant increases in the phosphocontent of downstream PDGFR targets Akt and ERK1/2 (5.3-fold and 2.4-fold, respectively) that were inhibited by PDGF immunoneutralization or by the selective PDGFR inhibitor imatinib. Serum-free J774A.1-MacCM or RAW264.7-MacCM completely prevented 3T3-L1 preadipocyte apoptosis normally induced by serum deprivation. Addition of PDGF alone to serum-free control medium was sufficient to prevent 3T3-L1 preadipocyte apoptosis. Inhibition of PDGFR activation by MacCM, either by addition of imatinib or by PDGF immunodepletion of MacCM, effectively disrupted the prosurvival effect. In summary, our data indicate that MacCM promotes preadipocyte survival in a PDGF-dependent manner.
                Bookmark

                Author and article information

                Journal
                Blood
                Blood
                American Society of Hematology
                0006-4971
                1528-0020
                December 13 2012
                December 13 2012
                : 120
                : 25
                : 5087-5088
                Article
                10.1182/blood-2012-09-458463
                bb8b81b2-8c93-4c7d-91a5-9f4f2f5d1f21
                © 2012
                History

                Comments

                Comment on this article