14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Techno-Economic Assessment of Co-Hydrothermal Carbonization of a Coal-Miscanthus Blend

      , ,
      Energies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Co-Hydrothermal Carbonization (Co-HTC) is a thermochemical process, where coal and biomass were treated simultaneously in subcritical water, resulting in bulk-homogenous hydrochar that is carbon-rich and a hydrophobic solid fuel with combustion characteristics like coal. In this study, technoeconomic analysis of Co-HTC was performed for a scaled-up Co-HTC plant that produces fuel for 110 MWe coal-fired power plant using Clarion coal #4a and miscanthus as starting feedstocks. With precise mass and energy balance of the Co-HTC process, sizing of individual equipment was conducted based on various systems equations. Cost of electricity was calculated from estimated capital, manufacturing, and operating and maintenance costs. The breakeven selling price of Co-HTC hydrochar was $117 per ton for a 110 MWe. Sensitivity analysis indicates that this breakeven selling price could be as low as $106 per ton for a higher capacity plant. Besides plant size, the price of solid fuel is sensitive to the feedstock costs and hydrochar yield.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Energy production from biomass (Part 1): Overview of biomass.

          The use of renewable energy sources is becoming increasingly necessary, if we are to achieve the changes required to address the impacts of global warming. Biomass is the most common form of renewable energy, widely used in the third world but until recently, less so in the Western world. Latterly much attention has been focused on identifying suitable biomass species, which can provide high-energy outputs, to replace conventional fossil fuel energy sources. The type of biomass required is largely determined by the energy conversion process and the form in which the energy is required. In the first of three papers, the background to biomass production (in a European climate) and plant properties is examined. In the second paper, energy conversion technologies are reviewed, with emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to generate electricity. The potential of a restored landfill site to act as a biomass source, providing fuel to supplement landfill gas-fuelled power stations, is examined, together with a comparison of the economics of power production from purpose-grown biomass versus waste-biomass. The third paper considers particular gasification technologies and their potential for biomass gasification.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis

                Bookmark

                Author and article information

                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                February 2019
                February 15 2019
                : 12
                : 4
                : 630
                Article
                10.3390/en12040630
                bb8eae79-b09d-4546-b7b2-6cffa81efd1a
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article