15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rare sugar d-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The fundamental cause of overweight and obesity is consumption of calorie-dense foods. We have introduced a zero-calorie sweet sugar, d-psicose ( d-allulose), a rare sugar that has been proven to have strong antihyperglycemic and antihyperlipidemic effects, and could be used as a replacement of natural sugar for the obese and diabetic subjects.

          Aim

          Above mentioned efficacy of d-psicose ( d-allulose) has been confirmed in our previous studies on type 2 diabetes mellitus (T2DM) model Otsuka Long-Evans Tokushima Fatty (OLETF) rats with short-term treatment. In this study we investigated the long-term effect of d-psicose in preventing the commencement and progression of T2DM with the mechanism of preservation of pancreatic β-cells in OLETF rats.

          Methods

          Treated OLETF rats were fed 5% d-psicose dissolved in water and control rats only water. Nondiabetic control rats, Long-Evans Tokushima Otsuka (LETO), were taken as healthy control and fed water. To follow the progression of diabetes, periodic measurements of blood glucose, plasma insulin, and body weight changes were continued till sacrifice at 60 weeks. Periodic in vivo body fat mass was measured. On sacrifice, pancreas, liver, and abdominal adipose tissues were collected for various staining tests.

          Results

          d-Psicose prevented the commencement and progression of T2DM till 60 weeks through the maintenance of blood glucose levels, decrease in body weight gain, and the control of postprandial hyperglycemia, with decreased levels of HbA 1c in comparison to nontreated control rats. This improvement in glycemic control was accompanied by the maintenance of plasma insulin levels and the preservation of pancreatic β-cells with the significant reduction in inflammatory markers. Body fat accumulation was significantly lower in the treatment group, with decreased infiltration of macrophages in the abdominal adipose tissue.

          Conclusion

          Our findings suggest that the rare sugar d-psicose could be beneficial for the prevention and control of obesity and hyperglycemia with the preservation of β-cells in the progression of T2DM.

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Banting lecture 1988. Role of insulin resistance in human disease.

          G M Reaven (1988)
          Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation: the link between insulin resistance, obesity and diabetes.

            Recent data have revealed that the plasma concentration of inflammatory mediators, such as tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), is increased in the insulin resistant states of obesity and type 2 diabetes, raising questions about the mechanisms underlying inflammation in these two conditions. It is also intriguing that an increase in inflammatory mediators or indices predicts the future development of obesity and diabetes. Two mechanisms might be involved in the pathogenesis of inflammation. Firstly, glucose and macronutrient intake causes oxidative stress and inflammatory changes. Chronic overnutrition (obesity) might thus be a proinflammatory state with oxidative stress. Secondly, the increased concentrations of TNF-alpha and IL-6, associated with obesity and type 2 diabetes, might interfere with insulin action by suppressing insulin signal transduction. This might interfere with the anti-inflammatory effect of insulin, which in turn might promote inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pancreatic beta-cell mass in European subjects with type 2 diabetes.

              Decreases in both beta-cell function and number can contribute to insulin deficiency in type 2 diabetes. Here, we quantified the beta-cell mass in pancreas obtained at autopsy of 57 type 2 diabetic (T2D) and 52 non-diabetic subjects of European origin. Sections from the body and tail were immunostained for insulin. The beta-cell mass was calculated from the volume density of beta-cells (measured by point-counting methods) and the weight of the pancreas. The pancreatic insulin concentration was measured in some of the subjects. beta-cell mass increased only slightly with body mass index (BMI). After matching for BMI, the beta-cell mass was 41% (BMI 15 years of overt diabetes respectively). Pancreatic insulin concentration was 30% lower in patients. In conclusion, the average beta-cell mass is about 39% lower in T2D subjects compared with matched controls. Its decrease with duration of the disease could be a consequence of diabetes that, with further impairment of insulin secretion, contributes to the progressive deterioration of glucose homeostasis. We do not believe that the small difference in beta-cell mass observed within 5 years of onset could cause diabetes in the absence of beta-cell dysfunction.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                17 January 2015
                : 9
                : 525-535
                Affiliations
                [1 ]Department of Cell Physiology, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan
                [2 ]Research and Development, Matsutani Chemical Industry Co., Ltd., Kitaitami, Itami-Shi, Hyogo, Japan
                [3 ]Division of Hospital Pathology, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan
                [4 ]Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan
                Author notes
                Correspondence: Akram Hossain, Department of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan, Tel +81 87 891 2095, Fax +81 87 891 2096, Email hossain@ 123456med.kagawa-u.ac.jp
                Article
                dddt-9-525
                10.2147/DDDT.S71289
                4304484
                25632221
                bb8f843f-f37c-4e80-909a-3d78164b4094
                © 2015 Hossain et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                rare sugar d-psicose,oletf rats,type 2 diabetes mellitus,insulin resistance,adiposity,β-islet preservation

                Comments

                Comment on this article