4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      N ω -(Carboxymethyl)arginine Is One of the Dominant Advanced Glycation End Products in Glycated Collagens and Mouse Tissues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advanced glycation end products (AGEs) accumulate in proteins during aging in humans. In particular, the AGE structure N ω -(carboxymethyl)arginine (CMA) is produced by oxidation in glycated collagen, accounting for one of the major proteins detected in biological samples. In this study, we investigated the mechanism by which CMA is generated in collagen and detected CMA in collagen-rich tissues. When various protein samples were incubated with glucose, the CMA content, detected using a monoclonal antibody, increased in a time-dependent manner only in glycated collagen, whereas the formation of N ε -(carboxymethyl)lysine (CML), a major antigenic AGE, was detected in all glycated proteins. Dominant CMA formation in glycated collagen was also observed by electrospray ionization-liquid chromatography-tandem mass spectrometry (LC-MS/MS). During incubation of glucose with collagen, CMA formation was enhanced with increasing glucose concentration, whereas it was inhibited in the presence of dicarbonyl-trapping reagents and a metal chelator. CMA formation was also observed upon incubating collagen with glyoxal, and CMA was generated in a time-dependent manner when glyoxal was incubated with type I–IV collagens. To identify hotspots of CMA formation, tryptic digests of glycated collagen were applied to an affinity column conjugated with anti-CMA. Several CMA peptides that are important for recognition by integrins were detected by LC-MS/MS and amino acid sequence analyses. CMA formation on each sequence was confirmed by incubation of the synthesized peptides with glyoxal and ribose. LC-MS detected CMA in the mouse skin at a higher level than other AGEs. Furthermore, CMA accumulation was greater in the human aorta of older individuals. Overall, our study provides evidence that CMA is a representative AGE structure that serves as a useful index to reflect the oxidation and glycation of collagen.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose.

          The glycation of proteins by glucose has been linked to the development of diabetic complications and other diseases. Early glycation is thought to involve the reaction of glucose with N-terminal and lysyl side chain amino groups to form Schiff's base and fructosamine adducts. The formation of the alpha-oxoaldehydes, glyoxal, methylglyoxal and 3-deoxyglucosone, in early glycation was investigated. Glucose (50 mM) degraded slowly at pH 7.4 and 37 degrees C to form glyoxal, methylglyoxal and 3-deoxyglucosone throughout a 3-week incubation period. Addition of t-BOC-lysine and human serum albumin increased the rate of formation of alpha-oxoaldehydes - except glyoxal and methylglyoxal concentrations were low with albumin, as expected from the high reactivity of glyoxal and methylglyoxal with arginine residues. The degradation of fructosyl-lysine also formed glyoxal, methylglyoxal and 3-deoxyglucosone. alpha-Oxoaldehyde formation was dependent on the concentration of phosphate buffer and availability of trace metal ions. This suggests that alpha-oxoaldehydes were formed in early glycation from the degradation of glucose and Schiff's base adduct. Since alpha-oxoaldehydes are important precursors of advanced glycation adducts, these adducts may be formed from early and advanced glycation processes. Short periods of hyperglycaemia, as occur in impaired glucose tolerance, may be sufficient to increase the concentrations of alpha-oxoaldehydes in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus.

            Collagen cross-linking, a major post-translational modification of collagen, plays important roles in the biological and biomechanical features of bone. Collagen cross-links can be divided into lysyl hydroxylase and lysyloxidase-mediated enzymatic immature divalent cross-links,mature trivalent pyridinoline and pyrrole cross-links, and glycation- or oxidation-induced non-enzymatic cross-links(advanced glycation end products) such as glucosepane and pentosidine. These types of cross-links differ in the mechanism of formation and in function. Material properties of newly synthesized collagen matrix may differ in tissue maturity and senescence from older matrix in terms of crosslink formation. Additionally, newly synthesized matrix in osteoporotic patients or diabetic patients may not necessarily be as well-made as age-matched healthy subjects. Data have accumulated that collagen cross-link formation affects not only the mineralization process but also microdamage formation. Consequently, collagen cross-linking is thought to affect the mechanical properties of bone. Furthermore,recent basic and clinical investigations of collagen cross-links seem to face a new era. For instance, serum or urine pentosidine levels are now being used to estimate future fracture risk in osteoporosis and diabetes. In this review, we describe age-related changes in collagen cross-links in bone and abnormalities of cross-links in osteoporosis and diabetes that have been reported in the literature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural and sun-induced aging of human skin.

              With worldwide expansion of the aging population, research on age-related pathologies is receiving growing interest. In this review, we discuss current knowledge regarding the decline of skin structure and function induced by the passage of time (chronological aging) and chronic exposure to solar UV irradiation (photoaging). Nearly every aspect of skin biology is affected by aging. The self-renewing capability of the epidermis, which provides vital barrier function, is diminished with age. Vital thermoregulation function of eccrine sweat glands is also altered with age. The dermal collagenous extracellular matrix, which comprises the bulk of skin and confers strength and resiliency, undergoes gradual fragmentation, which deleteriously impacts skin mechanical properties and dermal cell functions. Aging also affects wound repair, pigmentation, innervation, immunity, vasculature, and subcutaneous fat homeostasis. Altogether, age-related alterations of skin lead to age-related skin fragility and diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2019
                10 September 2019
                : 2019
                : 9073451
                Affiliations
                1Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
                2Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
                3Department of Food and Nutrition, Laboratory of Nutritional Science and Biochemistry, Japan Women's University, Tokyo, Japan
                4Nippi Research Institute of Biomatrix, Tokyo, Japan
                5Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
                Author notes

                Guest Editor: Fiammetta Monacelli

                Author information
                https://orcid.org/0000-0002-2074-0597
                https://orcid.org/0000-0003-0763-0067
                Article
                10.1155/2019/9073451
                6754957
                31583049
                bb8f8598-4d8d-4488-9074-4cdc0ff58ff5
                Copyright © 2019 Sho Kinoshita et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 January 2019
                : 31 March 2019
                : 16 August 2019
                Funding
                Funded by: Adaptable and Seamless Technology Transfer Program through Target-Driven R and D
                Funded by: Japan Science and Technology Agency
                Funded by: Tokai University
                Funded by: Japan Society for the Promotion of Science
                Award ID: 15K12364
                Award ID: 15H02902
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article