259
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A new view of the tree of life.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tree of life is one of the most important organizing principles in biology(1). Gene surveys suggest the existence of an enormous number of branches(2), but even an approximation of the full scale of the tree has remained elusive. Recent depictions of the tree of life have focused either on the nature of deep evolutionary relationships(3-5) or on the known, well-classified diversity of life with an emphasis on eukaryotes(6). These approaches overlook the dramatic change in our understanding of life's diversity resulting from genomic sampling of previously unexamined environments. New methods to generate genome sequences illuminate the identity of organisms and their metabolic capacities, placing them in community and ecosystem contexts(7,8). Here, we use new genomic data from over 1,000 uncultivated and little known organisms, together with published sequences, to infer a dramatically expanded version of the tree of life, with Bacteria, Archaea and Eukarya included. The depiction is both a global overview and a snapshot of the diversity within each major lineage. The results reveal the dominance of bacterial diversification and underline the importance of organisms lacking isolated representatives, with substantial evolution concentrated in a major radiation of such organisms. This tree highlights major lineages currently underrepresented in biogeochemical models and identifies radiations that are probably important for future evolutionary analyses.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

          Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses.

            Although the applicability of small subunit ribosomal RNA (16S rRNA) sequences for bacterial classification is now well accepted, the general use of these molecules has been hindered by the technical difficulty of obtaining their sequences. A protocol is described for rapidly generating large blocks of 16S rRNA sequence data without isolation of the 16S rRNA or cloning of its gene. The 16S rRNA in bulk cellular RNA preparations is selectively targeted for dideoxynucleotide-terminated sequencing by using reverse transcriptase and synthetic oligodeoxynucleotide primers complementary to universally conserved 16S rRNA sequences. Three particularly useful priming sites, which provide access to the three major 16S rRNA structural domains, routinely yield 800-1000 nucleotides of 16S rRNA sequence. The method is evaluated with respect to accuracy, sensitivity to modified nucleotides in the template RNA, and phylogenetic usefulness, by examination of several 16S rRNAs whose gene sequences are known. The relative simplicity of this approach should facilitate a rapid expansion of the 16S rRNA sequence collection available for phylogenetic analyses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents

              Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.
                Bookmark

                Author and article information

                Journal
                Nat Microbiol
                Nature microbiology
                2058-5276
                2058-5276
                2016
                : 1
                Affiliations
                [1 ] Department of Earth and Planetary Science, UC Berkeley, Berkeley, California 94720, USA.
                [2 ] Department of Marine Science, University of Texas Austin, Port Aransas, Texas 78373, USA.
                [3 ] Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California 94720, USA.
                [4 ] Sector of Decommissioning and Radioactive Wastes Management, Japan Atomic Energy Agency, Ibaraki 319-1184, Japan.
                [5 ] Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan.
                [6 ] Department of Ecology and Evolutionary Biology, UC Santa Cruz, Santa Cruz, California 95064, USA.
                [7 ] Departments of Medicine and of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA.
                [8 ] Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA.
                [9 ] Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, California 94720, USA.
                Article
                nmicrobiol201648
                10.1038/nmicrobiol.2016.48
                27572647
                bb971543-5b10-4f19-945d-a4b8644b0ed6
                History

                Comments

                Comment on this article