6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanisms of the prostaglandin F2alpha-induced rise in [Ca2+]i in rat intrapulmonary arteries.

      The Journal of Physiology
      15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid, pharmacology, Animals, Boron Compounds, Calcium, analysis, metabolism, Calcium Channels, L-Type, physiology, Cardiovascular Agents, Diltiazem, Dinoprost, Inositol 1,4,5-Trisphosphate, Male, Muscle, Smooth, Vascular, drug effects, Pulmonary Artery, chemistry, Rats, Rats, Wistar, Receptors, Prostaglandin, Receptors, Thromboxane, Signal Transduction, Type C Phospholipases, Vasoconstriction, Vasoconstrictor Agents

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanisms by which prostaglandin F(2alpha) (PGF(2alpha)) increases intracellular Ca2+ concentration [Ca2+]i in vascular smooth muscle remain unclear. We examined the role of store-, receptor- and voltage-operated Ca2+ influx pathways in rat intrapulmonary arteries (IPA) loaded with Fura PE-3. Low concentrations (0.01-1 microM) of PGF(2alpha) caused a transient followed by a plateau rise in [Ca2+]i. Both responses became maximal at 0.1 microM PGF(2alpha). At higher concentrations of PGF(2alpha), a further slower rise in [Ca2+]i was superimposed on the plateau. The [Ca2+]i response to 0.1 microM PGF(2alpha) was mimicked by the FP receptor agonist fluprostenol, whilst the effect of 10 microM PGF(2alpha) was mimicked by the TP receptor agonist U-46619. The plateau rise in [Ca2+]i in response to 0.1 microM PGF(2alpha) was insensitive to diltiazem, and was abolished in Ca2+-free physiological salt solution, and by pretreatment with La3+, 2-APB, thapsigargin or U-73122. The rises in [Ca2+]i in response to 10 microM PGF(2alpha) and 0.01 microM U-46619 were partially inhibited by diltiazem. The diltiazem-resistant components of both of these responses were inhibited by 2-APB and La3+ to an extent which was significantly less than that seen for the response to 0.1 microM PGF(2alpha), and were also much less sensitive to U-73122. The U-46619 response was also relatively insensitive to thapsigargin. When Ca2+ was replaced with Sr2+, the sustained increase in the Fura PE-3 signal to 0.1 microM PGF(2alpha) was abolished, whereas 10 microM PGF(2alpha) and 0.05 microM U-46619 still caused substantial increases. These results suggest that low concentrations of PGF(2alpha) act via FP receptors to cause IP3-dependent Ca2+ release and store operated Ca2+ entry (SOCE). U-46619 and 10-100 microM PGF(2alpha) cause a TP receptor-mediated Ca2+ influx involving both L-type Ca2+ channels and a receptor operated pathway, which differs from SOCE in its susceptibility to La3+, 2-APB and thapsigargin, does not require phospholipase C activation, and is Sr2+ permeable.

          Related collections

          Author and article information

          Comments

          Comment on this article