35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancement of bactericidal effects of sodium hypochlorite in chiller water with food additive grade calcium hydroxide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An alkaline agent, namely food additive grade calcium hydroxide (FdCa(OH) 2) in solution at 0.17%, was evaluated for its bactericidal efficacies in chiller water with sodium hypochlorite (NaOCl) at a concentration of 200 ppm total residual chlorine. Without organic material presence, NaOCl could inactivate Salmonella Infantis and Escherichia coli within 5 sec, but in the presence of fetal bovine serum (FBS) at 0.5%, the bactericidal effects of NaOCl were diminished completely. FdCa(OH) 2 solution required 3 min to inactivate bacteria with or without 5% FBS. When NaOCl and FdCa(OH) 2 were mixed at the final concentration of 200 ppm and 0.17%, respectively, the mixed solution could inactivate bacteria at acceptable level (10 3 reduction of bacterial titer) within 30 sec in the presence of 0.5% FBS. The mixed solution also inhibited cross-contamination with S. Infantis or E. coli on chicken meats. It was confirmed and elucidated that FdCa(OH) 2 has a synergistic effect together with NaOCl for inactivating microorganisms.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Inactivation of avian influenza virus using common detergents and chemicals.

          Six disinfectant chemicals were tested individually for effectiveness against low pathogenic avian influenza virus (LPAIV) A/H7N2/Chick/MinhMa/04. The tested agents included acetic acid (C2H4O2), citric acid (C6H8O7), calcium hypochlorite (Ca(ClO)2), sodium hypochlorite (NaOCl), a powdered laundry detergent with peroxygen (bleach), and a commercially available iodine/acid disinfectant. Four of the six chemicals, including acetic acid (5%), citric acid (1% and 3%), calcium hypochlorite (750 ppm), and sodium hypochlorite (750 ppm) effectively inactivated LPAIV on hard and nonporous surfaces. The conventional laundry detergent was tested at multiple concentrations and found to be suitable for inactivating LPAIV on hard and nonporous surfaces at 6 g/L. Only citric acid and commercially available iodine/acid disinfectant were found to be effective at inactivating LPAIV on both porous and nonporous surfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Survival and death of Salmonella typhimurium and Campylobacter jejuni in processing water and on chicken skin during poultry scalding and chilling.

            Salmonella Typhimurium and Campylobacter jejuni were inoculated in scalding water, in chilled water, and on chicken skins to examine the effects of scalding temperature (50, 55, and 60 degrees C) and the chlorine level in chilled water (0, 10, 30, and 50 ppm), associated with the ages of scalding water (0 and 10 h) and chilled water (0 and 8 h), on bacterial survival or death. After scalding at 50 and 60 degrees C, the reductions of C. jejuni were 1.5 and 6.2 log CFU/ml in water and 2 log CFU/cm2 on chicken skins; the reductions of Salmonella Typhimurium were 5.5 log CFU/ml in water and 2 log CFU/cm2 on skins, respectively. The age of scalding water did not significantly (P > 0.05) affect bacterial heat sensitivity. However, the increase in the age of chilled water significantly (P < 0.05) reduced the chlorine effect. In 0-h chilled water. C. jejuni and Salmonella Typhimurium were reduced by 3.3 and 0.7 log CFU/ml, respectively, after treatment with 10 ppm of chlorine and became nondetectable with 30 and 50 ppm of chlorine. In 8-h chilled water, the reduction of C. jejuni and Salmonella Typhimurium was <0.5 log CFU/ml with 10 ppm of chlorine and ranged from 4 to 5.5 log CFU/ml with 50 ppm of chlorine. Chlorination of chilled water did not effectively reduce the bacteria attached on chicken skins. The D-values of Salmonella Typhimurium and C. jejuni were calculated for the prediction of their survival or death in the poultry scalding and chilling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments

              Hypochlorous acid (HOCl) solutions were evaluated for their virucidal ability against a low pathogenic avian influenza virus (AIV), H7N1. HOCl solutions containing 50, 100 and 200 ppm chlorine (pH 6) or their sprayed solutions (harvested in dishes placed at 1 or 30 cm distance between the spray nozzle and dish) were mixed with the virus with or without organic materials (5% fetal bovine serum: FBS). Under plain diluent conditions (without FBS), harvested solutions of HOCl after spraying could decrease the AIV titer by more than 1,000 times, to an undetectable level (< 2.5 log10TCID50/ml) within 5 sec, with the exception of the 50 ppm solution harvested after spraying at the distance of 30 cm. Under the dirty conditions (in the presence of 5% FBS), they lost their virucidal activity. When HOCl solutions were sprayed directly on the virus on rayon sheets for 10 sec, the solutions of 100 and 200 ppm could inactivate AIV immediately after spraying, while 50 ppm solution required at least 3 min of contact time. In the indirect spray form, after 10 sec of spraying, the lids of the dishes were opened to expose the virus on rayon sheets to HOCl. In this form, the 200 ppm solution inactivated AIV within 10 min of contact, while 50 and 100 ppm could not inactivate it. These data suggest that HOCl can be used in spray form to inactivate AIV at the farm level.
                Bookmark

                Author and article information

                Journal
                J Vet Med Sci
                J. Vet. Med. Sci
                JVMS
                The Journal of Veterinary Medical Science
                The Japanese Society of Veterinary Science
                0916-7250
                1347-7439
                12 May 2017
                June 2017
                : 79
                : 6
                : 1019-1023
                Affiliations
                [1) ]Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
                [2) ]Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan 5290002, Israel
                Author notes
                [* ]Correspondence to: Takehara, K., Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan. e-mail: takehara@ 123456cc.tuat.ac.jp
                Article
                17-0089
                10.1292/jvms.17-0089
                5487776
                28496013
                bbaa4475-c215-400c-97a0-cd0e7e982a7d
                ©2017 The Japanese Society of Veterinary Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/ )

                History
                : 21 February 2017
                : 28 April 2017
                Categories
                Avian Pathology
                Full Paper

                bacterial disinfection,food additive grade calcium hydroxide,inhibition of cross contamination,sodium hypochlorite,synergistic effect

                Comments

                Comment on this article