5
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Antiplatelet Therapy after Percutaneous Coronary Intervention

      review-article
      Cerebrovascular Diseases
      S. Karger AG
      Drug-eluting stents, Dual antiplatelet therapy, Percutaneous coronary intervention

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is intense interest in the relationship between inflammation, thrombosis, platelet aggregation, and hyperlipidemia in patients with coronary artery disease. The specific role of inflammation with its linkage to the coagulation cascade has been well studied. A number of inflammatory markers have been identified which can be used for risk stratification in patients with acute coronary syndromes. Patients with acute coronary syndromes at the time of presentation often have an underlying inflammatory state which needs therapy with antiplatelet regimens including now increasingly frequently clopidogrel in addition to the standard of aspirin. In those patients who are treated medically for their acute coronary syndromes, long-term treatment with dual antiplatelet therapy has been documented to be associated with improved outcome. In patients who undergo an invasive approach with placement of intracoronary stents, the importance of dual antiplatelet therapy is increased. Drug-eluting stents are now used in approximately 90% of all interventional procedures. There is evidence to suggest that while these patients have improved outcome in terms of a decreased need for subsequent procedures to treat restenosis, there is the potential for late subacute stent thrombosis. When late subacute stent thrombosis occurs, it results in mortality or infarction in 40–60% of patients. Dual antiplatelet therapy is therefore recommended for an increasingly longer time in this patient group. At the present time, protocols indicate 3 months for one of the drug-eluting stents and 6 months for the other. However, increasingly longer antiplatelet therapy is being used clinically. Assessment of platelet function during follow-up is as yet early. There are issues about which specific test to use and the definition of platelet hyperreactivity. In the future, more individually targeted therapy may be possible if we can more adequately assess the degree of hyperreactivity and underlying inflammation.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization.

          The need for repeated treatment of restenosis of a treated vessel remains the main limitation of percutaneous coronary revascularization. Because sirolimus (rapamycin) inhibits the proliferation of lymphocytes and smooth-muscle cells, we compared a sirolimus-eluting stent with a standard uncoated stent in patients with angina pectoris. We performed a randomized, double-blind trial to compare the two types of stents for revascularization of single, primary lesions in native coronary arteries. The trial included 238 patients at 19 medical centers. The primary end point was in-stent late luminal loss (the difference between the minimal luminal diameter immediately after the procedure and the diameter at six months). Secondary end points included the percentage of in-stent stenosis of the luminal diameter and the rate of restenosis (luminal narrowing of 50 percent or more). We also analyzed a composite clinical end point consisting of death, myocardial infarction, and percutaneous or surgical revascularization at 1, 6, and 12 months. At six months, the degree of neointimal proliferation, manifested as the mean (+/-SD) late luminal loss, was significantly lower in the sirolimus-stent group (-0.01+/-0.33 mm) than in the standard-stent group (0.80+/-0.53 mm, P<0.001). None of the patients in the sirolimus-stent group, as compared with 26.6 percent of those in the standard-stent group, had restenosis of 50 percent or more of the luminal diameter (P<0.001). There were no episodes of stent thrombosis. During a follow-up period of up to one year, the overall rate of major cardiac events was 5.8 percent in the sirolimus-stent group and 28.8 percent in the standard-stent group (P<0.001). The difference was due entirely to a higher rate of revascularization of the target vessel in the standard-stent group. As compared with a standard coronary stent, a sirolimus-eluting stent shows considerable promise for the prevention of neointimal proliferation, restenosis, and associated clinical events.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery.

            Preliminary reports of studies involving simple coronary lesions indicate that a sirolimus-eluting stent significantly reduces the risk of restenosis after percutaneous coronary revascularization. We conducted a randomized, double-blind trial comparing a sirolimus-eluting stent with a standard stent in 1058 patients at 53 centers in the United States who had a newly diagnosed lesion in a native coronary artery. The coronary disease in these patients was complex because of the frequent presence of diabetes (in 26 percent of patients), the high percentage of patients with longer lesions (mean, 14.4 mm), and small vessels (mean, 2.80 mm). The primary end point was failure of the target vessel (a composite of death from cardiac causes, myocardial infarction, and repeated percutaneous or surgical revascularization of the target vessel) within 270 days. The rate of failure of the target vessel was reduced from 21.0 percent with a standard stent to 8.6 percent with a sirolimus-eluting stent (P<0.001)--a reduction that was driven largely by a decrease in the frequency of the need for revascularization of the target lesion (16.6 percent in the standard-stent group vs. 4.1 percent in the sirolimus-stent group, P<0.001). The frequency of neointimal hyperplasia within the stent was also decreased in the group that received sirolimus-eluting stents, as assessed by both angiography and intravascular ultrasonography. Subgroup analyses revealed a reduction in the rates of angiographic restenosis and target-lesion revascularization in all subgroups examined. In this randomized clinical trial involving patients with complex coronary lesions, the use of a sirolimus-eluting stent had a consistent treatment effect, reducing the rates of restenosis and associated clinical events in all subgroups analyzed. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease.

              Restenosis after coronary stenting necessitates repeated percutaneous or surgical revascularization procedures. The delivery of paclitaxel to the site of vascular injury may reduce the incidence of neointimal hyperplasia and restenosis. At 73 U.S. centers, we enrolled 1314 patients who were receiving a stent in a single, previously untreated coronary-artery stenosis (vessel diameter, 2.5 to 3.75 mm; lesion length, 10 to 28 mm) in a prospective, randomized, double-blind study. A total of 652 patients were randomly assigned to receive a bare-metal stent, and 662 to receive an identical-appearing, slow-release, polymer-based, paclitaxel-eluting stent. Angiographic follow-up was prespecified at nine months in 732 patients. In terms of base-line characteristics, the two groups were well matched. Diabetes mellitus was present in 24.2 percent of patients; the mean reference-vessel diameter was 2.75 mm, and the mean lesion length was 13.4 mm. A mean of 1.08 stents (length, 21.8 mm) were implanted per patient. The rate of ischemia-driven target-vessel revascularization at nine months was reduced from 12.0 percent with the implantation of a bare-metal stent to 4.7 percent with the implantation of a paclitaxel-eluting stent (relative risk, 0.39; 95 percent confidence interval, 0.26 to 0.59; P<0.001). Target-lesion revascularization was required in 3.0 percent of the group that received a paclitaxel-eluting stent, as compared with 11.3 percent of the group that received a bare-metal stent (relative risk, 0.27; 95 percent confidence interval, 0.16 to 0.43; P<0.001). The rate of angiographic restenosis was reduced from 26.6 percent to 7.9 percent with the paclitaxel-eluting stent (relative risk, 0.30; 95 percent confidence interval, 0.19 to 0.46; P<0.001). The nine-month composite rates of death from cardiac causes or myocardial infarction (4.7 percent and 4.3 percent, respectively) and stent thrombosis (0.6 percent and 0.8 percent, respectively) were similar in the group that received a paclitaxel-eluting stent and the group that received a bare-metal stent. As compared with bare-metal stents, the slow-release, polymer-based, paclitaxel-eluting stent is safe and markedly reduces the rates of clinical and angiographic restenosis at nine months. Copyright 2004 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                CED
                Cerebrovasc Dis
                10.1159/issn.1015-9770
                Cerebrovascular Diseases
                S. Karger AG
                978-3-8055-8087-8
                978-3-318-01325-2
                1015-9770
                1421-9786
                2006
                February 2006
                17 February 2006
                : 21
                : Suppl 1
                : 25-34
                Affiliations
                Mayo Clinic, Rochester, Minn., USA
                Article
                90359 Cerebrovasc Dis 2006;21:25–34
                10.1159/000090359
                16479099
                bbb1af54-094a-4d6a-b66d-67fde6b0858d
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 7, References: 76, Pages: 10
                Categories
                Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Drug-eluting stents,Percutaneous coronary intervention,Dual antiplatelet therapy

                Comments

                Comment on this article