72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

          Author summary

          Obesity is an enlargement of adipose tissue to store excess energy intake. Hyperplasia (cell number increase) and hypertrophy (cell size increase) are two possible growth mechanisms. The in vivo dynamic change of fat tissue cannot be monitored in real time due to current technical limitations. However, we can measure cell-size distributions of fat cells in individual animals. Our fundamental goal is to extract dynamic features of tissue remodeling from snapshots of cell-size distributions. We develop a mathematical model that interpolates between the cell-size distribution measurements and predicts the continuous change of the cell-size distribution with respect to fat pad mass increase. Our adipose tissue growth model includes three essential components: new cell recruitment, size-dependent cell growth, and cell-size fluctuations. In particular, we compared the adipose tissue growth of obesity-prone and obesity-resistant mice under a standard or a high-fat diet to examine the genetic and diet effect on adipose tissue growth. By applying our model to these different conditions, we found that the size increase of fat cells is dependent on diet. On the other hand, the diet-induced number increase of fat cells is dependent on strain, suggesting a synergy between genetics and diet.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Developmental origin of fat: tracking obesity to its source.

          The development of obesity not only depends on the balance between food intake and caloric utilization but also on the balance between white adipose tissue, which is the primary site of energy storage, and brown adipose tissue, which is specialized for energy expenditure. In addition, some sites of white fat storage in the body are more closely linked than others to the metabolic complications of obesity, such as diabetes. In this Review, we consider how the developmental origins of fat contribute to its physiological, cellular, and molecular heterogeneity and explore how these factors may play a role in the growing epidemic of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipocyte death, adipose tissue remodeling, and obesity complications.

            We sought to determine the role of adipocyte death in obesity-induced adipose tissue (AT) inflammation and obesity complications. Male C57BL/6 mice were fed a high-fat diet for 20 weeks to induce obesity. Every 4 weeks, insulin resistance was assessed by intraperitoneal insulin tolerance tests, and epididymal (eAT) and inguinal subcutaneous AT (iAT) and livers were harvested for histological, immunohistochemical, and gene expression analyses. Frequency of adipocyte death in eAT increased from <0.1% at baseline to 16% at week 12, coincident with increases in 1) depot weight; 2) AT macrophages (ATM Phi s) expressing F4/80 and CD11c; 3) mRNA for tumor necrosis factor (TNF)-alpha, monocyte chemotactic protein (MCP)-1, and interleukin (IL)-10; and 4) insulin resistance. ATM Phi s in crown-like structures surrounding dead adipocytes expressed TNF-alpha and IL-6 proteins. Adipocyte number began to decline at week 12. At week 16, adipocyte death reached approximately 80%, coincident with maximal expression of CD11c and inflammatory genes, loss (40%) of eAT mass, widespread collagen deposition, and accelerated hepatic macrosteatosis. By week 20, adipocyte number was restored with small adipocytes, coincident with reduced adipocyte death (fourfold), CD11c and MCP-1 gene expression (twofold), and insulin resistance (35%). eAT weight did not increase at week 20 and was inversely correlated with liver weight after week 12 (r = -0. 85, P < 0.001). In iAT, adipocyte death was first detected at week 12 and remained
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genealogies of mouse inbred strains.

              The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                March 2009
                March 2009
                27 March 2009
                : 5
                : 3
                : e1000324
                Affiliations
                [1 ]Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethedsa, Maryland, United States of America
                [2 ]Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethedsa, Maryland, United States of America
                [3 ]GPP/OITE/OIR/OD, National Institutes of Health, Bethesda, Maryland, United States of America
                [4 ]Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethedsa, Maryland, United States of America
                [5 ]Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethedsa, Maryland, United States of America
                University of Virginia, United States of America
                Author notes

                Conceived and designed the experiments: JJ OG AES SWC VP. Performed the experiments: OG SP WJ SM. Analyzed the data: JJ OG VP. Wrote the paper: JJ OG SWC VP.

                Article
                08-PLCB-RA-0803R2
                10.1371/journal.pcbi.1000324
                2653640
                19325873
                bbb82a90-2798-4846-8e69-22f50f3a8c99
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 15 September 2008
                : 9 February 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Biophysics
                Biophysics/Theory and Simulation
                Cell Biology/Cell Growth and Division
                Computational Biology
                Developmental Biology/Cell Differentiation
                Diabetes and Endocrinology/Obesity
                Genetics and Genomics/Complex Traits
                Nutrition/Obesity
                Physiology/Integrative Physiology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article