182
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Homolog of protein kinase Mζ maintains context aversive memory and underlying long-term facilitation in terrestrial snail Helix

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been shown that a variety of long-term memories in different regions of the brain and in different species are quickly erased by local inhibition of protein kinase Mζ (PKMζ), a persistently active protein kinase. Using antibodies to mammalian PKMζ, we describe in the present study the localization of immunoreactive molecules in the nervous system of the terrestrial snail Helix lucorum. Presence of a homolog of PKMζ was confirmed with transcriptomics. We have demonstrated in behavioral experiments that contextual fear memory disappeared under a blockade of PKMζ with a selective peptide blocker of PKMζ zeta inhibitory peptide (ZIP), but not with scrambled ZIP. If ZIP was combined with a “reminder” (20 min in noxious context), no impairment of the long-term contextual memory was observed. In electrophysiological experiments we investigated whether PKMζ takes part in the maintenance of long-term facilitation (LTF) in the neural circuit mediating tentacle withdrawal. LTF of excitatory synaptic inputs to premotor interneurons was induced by high-frequency nerve stimulation combined with serotonin bath applications and lasted at least 4 h. We found that bath application of 2 × 10 −6 M ZIP at the 90th min after the tetanization reduced the EPSP amplitude to the non-tetanized EPSP values. Applications of the scrambled ZIP peptide at a similar time and concentration didn’t affect the EPSP amplitudes. In order to test whether effects of ZIP are specific to the synapses, we performed experiments with LTF of somatic membrane responses to local glutamate applications. It was shown earlier that serotonin application in such an “artificial synapse” condition elicits LTF of responses to glutamate. It was found that ZIP had no effect on LTF in these conditions, which may be explained by the very low concentration of PKMζ molecules in somata of these identified neurons, as evidenced by immunochemistry. Obtained results suggest that the Helix homolog of PKMζ might be involved in post-induction maintenance of long-term changes in the nervous system of the terrestrial snail.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Storage of spatial information by the maintenance mechanism of LTP.

          Analogous to learning and memory storage, long-term potentiation (LTP) is divided into induction and maintenance phases. Testing the hypothesis that the mechanism of LTP maintenance stores information requires reversing this mechanism in vivo and finding out whether long-term stored information is lost. This was not previously possible. Recently however, persistent phosphorylation by the atypical protein kinase C isoform, protein kinase Mzeta (PKMz), has been found to maintain late LTP in hippocampal slices. Here we show that a cell-permeable PKMz inhibitor, injected in the rat hippocampus, both reverses LTP maintenance in vivo and produces persistent loss of 1-day-old spatial information. Thus, the mechanism maintaining LTP sustains spatial memory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How does PKMζ maintain long-term memory?

            Most of the molecular mechanisms contributing to long-term memory have been found to consolidate information within a brief time window after learning, but not to maintain information during memory storage. However, with the discovery that synaptic long-term potentiation is maintained by the persistently active protein kinase, protein kinase Mζ (PKMζ), a possible mechanism of memory storage has been identified. Recent research shows how PKMζ might perpetuate information both at synapses and during long-term memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory.

              Long-term potentiation (LTP), a well-characterized form of synaptic plasticity, has long been postulated as a cellular correlate of learning and memory. Although LTP can persist for long periods of time, the mechanisms underlying LTP maintenance, in the midst of ongoing protein turnover and synaptic activity, remain elusive. Sustained activation of the brain-specific protein kinase C (PKC) isoform protein kinase M-ζ (PKM-ζ) has been reported to be necessary for both LTP maintenance and long-term memory. Inhibiting PKM-ζ activity using a synthetic zeta inhibitory peptide (ZIP) based on the PKC-ζ pseudosubstrate sequence reverses established LTP in vitro and in vivo. More notably, infusion of ZIP eliminates memories for a growing list of experience-dependent behaviours, including active place avoidance, conditioned taste aversion, fear conditioning and spatial learning. However, most of the evidence supporting a role for PKM-ζ in LTP and memory relies heavily on pharmacological inhibition of PKM-ζ by ZIP. To further investigate the involvement of PKM-ζ in the maintenance of LTP and memory, we generated transgenic mice lacking PKC-ζ and PKM-ζ. We find that both conventional and conditional PKC-ζ/PKM-ζ knockout mice show normal synaptic transmission and LTP at Schaffer collateral-CA1 synapses, and have no deficits in several hippocampal-dependent learning and memory tasks. Notably, ZIP still reverses LTP in PKC-ζ/PKM-ζ knockout mice, indicating that the effects of ZIP are independent of PKM-ζ.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                22 June 2015
                2015
                : 9
                : 222
                Affiliations
                [1] 1Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia
                [2] 2Biology Department, Lomonosov Moscow State University Moscow, Russia
                Author notes

                Edited by: Dieter Wicher, Max Planck Institute for Chemical Ecology, Germany

                Reviewed by: Lei Liu, University of Florida, USA; Merid Negash Getahun, Max Planck Institute for Chemical Ecology and Addis Ababa University, Germany

                *Correspondence: Pavel M. Balaban, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Butlerova 5a, Moscow, 117485, Russia pmbalaban@ 123456gmail.com
                Article
                10.3389/fncel.2015.00222
                4475826
                bbbac725-7d77-4a57-8117-764ac28bd694
                Copyright © 2015 Balaban, Roshchin, Timoshenko, Zuzina, Lemak, Ierusalimsky, Aseyev and Malyshev.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 April 2015
                : 26 May 2015
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 39, Pages: 13, Words: 9791
                Funding
                Funded by: Russian Foundation for Basic Research
                Funded by: Programs of Russian Academy of Sciences
                Funded by: Russian Science Foundation
                Award ID: #14–25–0072
                Categories
                Neuroscience
                Original Research

                Neurosciences
                invertebrates,reconsolidation,memory blockade,withdrawal behavior,memory maintenance,contextual fear conditioning

                Comments

                Comment on this article