28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Obstructive sleep apnea: current perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevalence of obstructive sleep apnea (OSA) continues to rise. So too do the health, safety, and economic consequences. On an individual level, the causes and consequences of OSA can vary substantially between patients. In recent years, four key contributors to OSA pathogenesis or “phenotypes” have been characterized. These include a narrow, crowded, or collapsible upper airway “anatomical compromise” and “non-anatomical” contributors such as ineffective pharyngeal dilator muscle function during sleep, a low threshold for arousal to airway narrowing during sleep, and unstable control of breathing (high loop gain). Each of these phenotypes is a target for therapy. This review summarizes the latest knowledge on the different contributors to OSA with a focus on measurement techniques including emerging clinical tools designed to facilitate translation of new cause-driven targeted approaches to treat OSA. The potential for some of the specific pathophysiological causes of OSA to drive some of the key symptoms and consequences of OSA is also highlighted.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets.

          The pathophysiologic causes of obstructive sleep apnea (OSA) likely vary among patients but have not been well characterized. To define carefully the proportion of key anatomic and nonanatomic contributions in a relatively large cohort of patients with OSA and control subjects to identify pathophysiologic targets for future novel therapies for OSA. Seventy-five men and women with and without OSA aged 20-65 years were studied on three separate nights. Initially, the apnea-hypopnea index was determined by polysomnography followed by determination of anatomic (passive critical closing pressure of the upper airway [Pcrit]) and nonanatomic (genioglossus muscle responsiveness, arousal threshold, and respiratory control stability; loop gain) contributions to OSA. Pathophysiologic traits varied substantially among participants. A total of 36% of patients with OSA had minimal genioglossus muscle responsiveness during sleep, 37% had a low arousal threshold, and 36% had high loop gain. A total of 28% had multiple nonanatomic features. Although overall the upper airway was more collapsible in patients with OSA (Pcrit, 0.3 [-1.5 to 1.9] vs. -6.2 [-12.4 to -3.6] cm H2O; P <0.01), 19% had a relatively noncollapsible upper airway similar to many of the control subjects (Pcrit, -2 to -5 cm H2O). In these patients, loop gain was almost twice as high as patients with a Pcrit greater than -2 cm H2O (-5.9 [-8.8 to -4.5] vs. -3.2 [-4.8 to -2.4] dimensionless; P = 0.01). A three-point scale for weighting the relative contribution of the traits is proposed. It suggests that nonanatomic features play an important role in 56% of patients with OSA. This study confirms that OSA is a heterogeneous disorder. Although Pcrit-anatomy is an important determinant, abnormalities in nonanatomic traits are also present in most patients with OSA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome.

            Obstructive sleep apnea (OSA) is an underdiagnosed condition characterized by recurrent episodes of obstruction of the upper airway leading to sleep fragmentation and intermittent hypoxia during sleep. Obesity predisposes to OSA, and the prevalence of OSA is increasing worldwide because of the ongoing epidemic of obesity. Recent evidence has shown that surrogate markers of cardiovascular risk, including sympathetic activation, systemic inflammation, and endothelial dysfunction, are significantly increased in obese patients with OSA versus those without OSA, suggesting that OSA is not simply an epiphenomenon of obesity. Moreover, findings from animal models and patients with OSA show that intermittent hypoxia exacerbates the metabolic dysfunction of obesity, augmenting insulin resistance and nonalcoholic fatty liver disease. In patients with the metabolic syndrome, the prevalence of moderate to severe OSA is very high (∼60%). In this population, OSA is independently associated with increased glucose and triglyceride levels as well as markers of inflammation, arterial stiffness, and atherosclerosis. A recent randomized, controlled, crossover study showed that effective treatment of OSA with continuous positive airway pressure for 3 months significantly reduced several components of the metabolic syndrome, including blood pressure, triglyceride levels, and visceral fat. Finally, several cohort studies have consistently shown that OSA is associated with increased cardiovascular mortality, independent of obesity. Taken together, these results support the concept that OSA exacerbates the cardiometabolic risk attributed to obesity and the metabolic syndrome. Recognition and treatment of OSA may decrease the cardiovascular risk in obese patients. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable Monitoring Task Force of the American Academy of Sleep Medicine.

              Based on a review of literature and consensus, the Portable Monitoring Task Force of the American Academy of Sleep Medicine (AASM) makes the following recommendations: unattended portable monitoring (PM) for the diagnosis of obstructive sleep apnea (OSA) should be performed only in conjunction with a comprehensive sleep evaluation. Clinical sleep evaluations using PM must be supervised by a practitioner with board certification in sleep medicine or an individual who fulfills the eligibility criteria for the sleep medicine certification examination. PM may be used as an alternative to polysomnography (PSG) for the diagnosis of OSA in patients with a high pretest probability of moderate to severe OSA. PM is not appropriate for the diagnosis of OSA in patients with significant comorbid medical conditions that may degrade the accuracy of PM. PM is not appropriate for the diagnostic evaluation of patients suspected of having comorbid sleep disorders. PM is not appropriate for general screening of asymptomatic populations. PM may be indicated for the diagnosis of OSA in patients for whom in-laboratory PSG is not possible by virtue of immobility, safety, or critical illness. PM may also be indicated to monitor the response to non-CPAP treatments for sleep apnea. At a minimum, PM must record airflow, respiratory effort, and blood oxygenation. The airflow, effort, and oximetric biosensors conventionally used for in-laboratory PSG should be used in PM. The Task Force recommends that PM testing be performed under the auspices of an AASM-accredited comprehensive sleep medicine program with written policies and procedures. An experienced sleep technologist/technician must apply the sensors or directly educate patients in sensor application. The PM device must allow for display of raw data with the capability of manual scoring or editing of automated scoring by a qualified sleep technician/technologist. A board certified sleep specialist, or an individual who fulfills the eligibility criteria for the sleep medicine certification examination, must review the raw data from PM using scoring criteria consistent with current published AASM standards. Under the conditions specified above, PM may be used for unattended studies in the patient's home. Afollow-up visit to review test results should be performed for all patients undergoing PM. Negative or technically inadequate PM tests in patients with a high pretest probability of moderate to severe OSA should prompt in-laboratory polysomnography.
                Bookmark

                Author and article information

                Journal
                Nat Sci Sleep
                Nat Sci Sleep
                Nature and Science of Sleep
                Nature and Science of Sleep
                Dove Medical Press
                1179-1608
                2018
                23 January 2018
                : 10
                : 21-34
                Affiliations
                [1 ]Neuroscience Research Australia (NeuRA)
                [2 ]School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
                Author notes
                Correspondence: Danny J Eckert, Neuroscience Research Australia (NeuRA), PO Box 1165, Randwick, Sydney, NSW 2031, Australia, Tel +61 2 9399 1814, Fax +61 2 9399 1027, Email d.eckert@ 123456neura.edu.au
                Article
                nss-10-021
                10.2147/NSS.S124657
                5789079
                29416383
                bbbd1cd6-cbb0-4927-a39d-cb0c5f8b44a3
                © 2018 Osman et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                pathophysiology,sleep-disordered breathing,arousal,upper airway physiology,control of breathing,precision medicine

                Comments

                Comment on this article