160
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design of a scanning gate microscope in a cryogen-free dilution refrigerator

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observation of Electron-Hole Puddles in Graphene Using a Scanning Single Electron Transistor

          The electronic density of states of graphene is equivalent to that of relativistic electrons. In the absence of disorder or external doping the Fermi energy lies at the Dirac point where the density of states vanishes. Although transport measurements at high carrier densities indicate rather high mobilities, many questions pertaining to disorder remain unanswered. In particular, it has been argued theoretically, that when the average carrier density is zero, the inescapable presence of disorder will lead to electron and hole puddles with equal probability. In this work, we use a scanning single electron transistor to image the carrier density landscape of graphene in the vicinity of the neutrality point. Our results clearly show the electron-hole puddles expected theoretically. In addition, our measurement technique enables to determine locally the density of states in graphene. In contrast to previously studied massive two dimensional electron systems, the kinetic contribution to the density of states accounts quantitatively for the measured signal. Our results suggests that exchange and correlation effects are either weak or have canceling contributions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Coherent Branched Flow in a Two-Dimensional Electron Gas

            Semiconductor nanostructures based on two dimensional electron gases (2DEGs) have the potential to provide new approaches to sensing, information processing, and quantum computation. Much is known about electron transport in 2DEG nanostructures and many remarkable phenomena have been discovered (e.g. weak localization, quantum chaos, universal conductance fluctuations)1,2 - yet a fundamental aspect of these devices, namely how electrons move through them, has never been clarified. Important details about the actual pattern of electron flow are not specified by statistical measures such as the mean free path. Scanned probe microscope (SPM) measurements allow spatial investigations of nanostructures, and it has recently become possible to directly image electron flow through 2DEG devices using newly developed SPM techniques3-13. Here we present SPM images of electron flow from a quantum point contact (QPC) which show unexpected dynamical channeling - the electron flow forms persistent, narrow, branching channels rather than smoothly spreading fans. Theoretical study of this flow, including electron scattering by impurities and donor atoms, shows that the channels are not due to deep valleys in the potential, but rather are caused by the indirect cumulative effect of small angle scattering. Surprisingly, the channels are decorated by interference fringes well beyond where the simplest thermal averaging arguments suggest they should be found. These findings may have important implications for 2DEG physics and for the design of future nanostructure devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Unexpected features of branched flow through high-mobility two-dimensional electron gases

              GaAs-based two-dimensional electron gases (2DEGs) show a wealth of remarkable electronic states, and serve as the basis for fast transistors, research on electrons in nanostructures, and prototypes of quantum-computing schemes. All these uses depend on the extremely low levels of disorder in GaAs 2DEGs, with low-temperature mean free paths ranging from microns to hundreds of microns. Here we study how disorder affects the spatial structure of electron transport by imaging electron flow in three different GaAs/AlGaAs 2DEGs, whose mobilities range over an order of magnitude. As expected, electrons flow along narrow branches that we find remain straight over a distance roughly proportional to the mean free path. We also observe two unanticipated phenomena in high-mobility samples. In our highest-mobility sample we observe an almost complete absence of sharp impurity or defect scattering, indicated by the complete suppression of quantum coherent interference fringes. Also, branched flow through the chaotic potential of a high-mobility sample remains stable to significant changes to the initial conditions of injected electrons.
                Bookmark

                Author and article information

                Journal
                28 November 2012
                Article
                10.1063/1.4794767
                1211.6546
                bbbf1447-f786-4156-ba80-2da0995bfbb3

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Rev. Sci. Instrum. 84, 033703 (2013)
                29 pages, 10 figures
                physics.ins-det cond-mat.mes-hall

                Comments

                Comment on this article