5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel titanium foam for bone tissue engineering

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Titanium alloys in total joint replacement--a materials science perspective.

          Increased use of titanium alloys as biomaterials is occurring due to their lower modulus, superior biocompatibility and enhanced corrosion resistance when compared to more conventional stainless steels and cobalt-based alloys. These attractive properties were a driving force for the early introduction of alpha (cpTi) and alpha + beta (Ti-6A1-4V) alloys as well as for the more recent development of new Ti-alloy compositions and orthopaedic metastable beta titanium alloys. The later possess enhanced biocompatibility, reduced elastic modulus, and superior strain-controlled and notch fatigue resistance. However, the poor shear strength and wear resistance of titanium alloys have nevertheless limited their biomedical use. Although the wear resistance of beta-Ti alloys has shown some improvement when compared to alpha + beta alloys, the ultimate utility of orthopaedic titanium alloys as wear components will require a more complete fundamental understanding of the wear mechanisms involved. This review examines current information on the physical and mechanical characteristics of titanium alloys used in artifical joint replacement prostheses, with a special focus on those issues associated with the long-term prosthetic requirements, e.g., fatigue and wear.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W.

            High-strength bioactive glass-ceramic A-W was soaked in various acellular aqueous solutions different in ion concentrations and pH. After soaking for 7 and 30 days, surface structural changes of the glass-ceramic were investigated by means of Fourier transform infrared reflection spectroscopy, thin-film x-ray diffraction, and scanning electronmicroscopic observations, in comparison with in vivo surface structural changes. So-called Tris buffer solution, pure water buffered with trishydroxymethyl-aminomethane, which had been used by various workers as a "simulated body fluid," did not reproduce the in vivo surface structural changes, i.e., apatite formation on the surface. A solution, ion concentrations and pH of which are almost equal to those of the human blood plasma--i.e., Na+ 142.0, K+ 5.0, Mg2+ 1.5, Ca2+ 2.5, Cl- 148.8, HCO3- 4.2 and PO4(2-) 1.0 mM and buffered at pH 7.25 with the trishydroxymethyl-aminomethane--most precisely reproduced in vivo surface structure change. This shows that careful selection of simulated body fluid is required for in vitro experiments. The results also support the concept that the apatite phase on the surface of glass-ceramic A-W is formed by a chemical reaction of the glass-ceramic with the Ca2+, HPO4(2-), and OH- ions in the body fluid.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Processing of biocompatible porous Ti and Mg

                Bookmark

                Author and article information

                Journal
                applab
                Journal of Materials Research
                J. Mater. Res.
                Cambridge University Press (CUP)
                0884-2914
                2044-5326
                October 2002
                January 2011
                : 17
                : 10
                : 2633-2639
                Article
                10.1557/JMR.2002.0382
                bbc212ec-ea9f-4ab8-86a4-ef9fc2bd0c3f
                © 2002
                History

                Comments

                Comment on this article