3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resveratrol: Multi-Targets Mechanism on Neurodegenerative Diseases Based on Network Pharmacology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resveratrol is a natural polyphenol in lots of foods and traditional Chinese medicines, which has shown promising treatment for neurodegenerative diseases (NDs). However, the molecular mechanisms of its action have not been systematically studied yet. In order to elucidate the network pharmacological prospective effects of resveratrol on NDs, we assessed of pharmacokinetics (PK) properties of resveratrol, studied target prediction and network analysis, and discussed interacting pathways using a network pharmacology method. Main PK properties of resveratrol were acquired. A total of 13,612 genes related to NDs, and 138 overlapping genes were determined through matching the 175 potential targets of resveratrol with disease-associated genes. Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to obtain more in-depth understanding of resveratrol on NDs. Accordingly, nodes with high degrees were obtained according using a PPI network, and AKT1, TP53, IL6, CASP3, VEGFA, TNF, MYC, MAPK3, MAPK8, and ALB were identified as hub target genes, which showed better affinity with resveratrol in silico studies. In addition, our experimental results demonstrated that resveratrol markedly enhanced the decreased levels of Bcl-2 and significantly reduced the increased expression of Bax and Caspase-3 in hippocampal neurons induced by glutamate exposure. Western blot results confirmed that resveratrol inhibited glutamate-induced apoptosis of hippocampal neurons partly by regulating the PI3K/AKT/mTOR pathway. In conclusion, we found that resveratrol could target multiple pathways forming a systematic network with pharmacological effects.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants

          The information about the genetic basis of human diseases lies at the heart of precision medicine and drug discovery. However, to realize its full potential to support these goals, several problems, such as fragmentation, heterogeneity, availability and different conceptualization of the data must be overcome. To provide the community with a resource free of these hurdles, we have developed DisGeNET (http://www.disgenet.org), one of the largest available collections of genes and variants involved in human diseases. DisGeNET integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. DisGeNET data are homogeneously annotated with controlled vocabularies and community-driven ontologies. Additionally, several original metrics are provided to assist the prioritization of genotype–phenotype relationships. The information is accessible through a web interface, a Cytoscape App, an RDF SPARQL endpoint, scripts in several programming languages and an R package. DisGeNET is a versatile platform that can be used for different research purposes including the investigation of the molecular underpinnings of specific human diseases and their comorbidities, the analysis of the properties of disease genes, the generation of hypothesis on drug therapeutic action and drug adverse effects, the validation of computationally predicted disease genes and the evaluation of text-mining methods performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Autophagy and apoptosis dysfunction in neurodegenerative disorders.

            Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              TCM Database@Taiwan: The World's Largest Traditional Chinese Medicine Database for Drug Screening In Silico

              Rapid advancing computational technologies have greatly speeded up the development of computer-aided drug design (CADD). Recently, pharmaceutical companies have increasingly shifted their attentions toward traditional Chinese medicine (TCM) for novel lead compounds. Despite the growing number of studies on TCM, there is no free 3D small molecular structure database of TCM available for virtual screening or molecular simulation. To address this shortcoming, we have constructed TCM Database@Taiwan (http://tcm.cmu.edu.tw/) based on information collected from Chinese medical texts and scientific publications. TCM Database@Taiwan is currently the world's largest non-commercial TCM database. This web-based database contains more than 20,000 pure compounds isolated from 453 TCM ingredients. Both cdx (2D) and Tripos mol2 (3D) formats of each pure compound in the database are available for download and virtual screening. The TCM database includes both simple and advanced web-based query options that can specify search clauses, such as molecular properties, substructures, TCM ingredients, and TCM classification, based on intended drug actions. The TCM database can be easily accessed by all researchers conducting CADD. Over the last eight years, numerous volunteers have devoted their time to analyze TCM ingredients from Chinese medical texts as well as to construct structure files for each isolated compound. We believe that TCM Database@Taiwan will be a milestone on the path towards modernizing traditional Chinese medicine.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                14 May 2020
                2020
                : 11
                : 694
                Affiliations
                [1] 1Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
                [2] 2Department of Pharmacy, Shaanxi University of Chinese Medicine , Xi'an, China
                [3] 3Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University , Xi'an, China
                [4] 4Department of Pharmacy, 940 Hospital of PLA Joint Logistics Support Forces , Lanzhou, China
                Author notes

                Edited by: Wei Zhou, The Affiliated Hospital of Shenzhen University, China

                Reviewed by: Jianhua Chen, Shanghai Jiao Tong University, China; Jianping Chen, Guangzhou University of Chinese Medicine, China

                *Correspondence: Aidong Wen, adwen-2004@ 123456hotmail.com ; Yi Ding, dingyi.007@ 123456163.com

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                †These authors have contributed equally to this work

                Article
                10.3389/fphar.2020.00694
                7240052
                32477148
                bbe2e610-4d4a-4fc3-9d02-e71e86a956ab
                Copyright © 2020 Wang, Wang, Liu, Ma, Huang, Lei, Wen and Ding

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 November 2019
                : 27 April 2020
                Page count
                Figures: 9, Tables: 2, Equations: 0, References: 62, Pages: 12, Words: 4474
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                resveratrol,neurodegenerative diseases (nds),network pharmacology,multitargets,apoptosis

                Comments

                Comment on this article