43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manduca sexta Genes by Plant Mediated RNA Interference

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          RNAi can be achieved in insect herbivores by feeding them host plants stably transformed to express double stranded RNA (dsRNA) of selected midgut-expressed genes. However, the development of stably transformed plants is a slow and laborious process and here we developed a rapid, reliable and transient method. We used viral vectors to produce dsRNA in the host plant Nicotiana attenuata to transiently silence midgut genes of the plant's lepidopteran specialist herbivore, Manduca sexta. To compare the efficacy of longer, undiced dsRNA for insect gene silencing, we silenced N. attenuata's dicer genes ( NaDCL1- 4) in all combinations in a plant stably transformed to express dsRNA targeting an insect gene.

          Methodology/Principal Findings

          Stable transgenic N. attenuata plants harboring a 312 bp fragment of MsCYP6B46 in an inverted repeat orientation ( ir-CYP6B46) were generated to produce CYP6B46 dsRNA. After consuming these plants, transcripts of CYP6B46 were significantly reduced in M. sexta larval midguts. The same 312 bp cDNA was cloned in an antisense orientation into a TRV vector and Agro-infiltrated into N. attenuata plants. When larvae ingested these plants, similar reductions in CYP6B46 transcripts were observed without reducing transcripts of the most closely related MsCYP6B45. We used this transient method to rapidly silence the expression of two additional midgut-expressed MsCYPs. CYP6B46 transcripts were further reduced in midguts, when the larvae fed on ir-CYP6B46 plants transiently silenced for two combinations of NaDCLs (DCL1/3/4 and DCL2/3/4) and contained higher concentrations of longer, undiced CYP6B46 dsRNA.

          Conclusions

          Both stable and transient expression of CYP6B46 dsRNA in host plants provides a specific and robust means of silencing this gene in M. sexta larvae, but the transient system is better suited for high throughput analyses. Transiently silencing NaDCLs in ir-CYP6B46 plants increased the silencing of MsCYP6B46, suggested that insect's RNAi machinery is more efficient with longer lengths of ingested dsRNA.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review.

          RNA interference already proved its usefulness in functional genomic research on insects, but it also has considerable potential for the control of pest insects. For this purpose, the insect should be able to autonomously take up the dsRNA, for example through feeding and digestion in its midgut. In this review we bring together current knowledge on the uptake mechanisms of dsRNA in insects and the potential of RNAi to affect pest insects. At least two pathways for dsRNA uptake in insects are described: the transmembrane channel-mediated uptake mechanism based on Caenorhabditis elegans' SID-1 protein and an 'alternative' endocytosis-mediated uptake mechanism. In the second part of the review dsRNA feeding experiments on insects are brought together for the first time, highlighting the achievement of implementing RNAi in insect control with the first successful experiments in transgenic plants and the diversity of successfully tested insect orders/species and target genes. We conclude with points of discussion and concerns regarding further research on dsRNA uptake mechanisms and the promising application possibilities for RNAi in insect control. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design.

            Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ingested double-stranded RNAs can act as species-specific insecticides.

              A serious shortcoming of many insecticides is that they can kill non-target species. To address this issue, we harnessed the sequence specificity of RNA interference (RNAi) to design orally-delivered double-stranded (ds) RNAs that selectively killed target species. Fruit flies (Drosophila melanogaster), flour beetles (Tribolium castaneum), pea aphids (Acyrthosiphon pisum), and tobacco hornworms (Manduca sexta) were selectively killed when fed species-specific dsRNA targeting vATPase transcripts. We also demonstrate that even closely related species can be selectively killed by feeding on dsRNAs that target the more variable regions of genes, such as the 3' untranslated regions (UTRs): four species of the genus Drosophila were selectively killed by feeding on short (<40 nt) dsRNAs that targeted the 3' UTR of the gamma-tubulin gene. For the aphid nymphs and beetle and moth larvae, dsRNA could simply be dissolved into their diets, but to induce RNAi in the drosophilid species, the dsRNAs needed to be encapsulated in liposomes to help facilitate uptake of the dsRNA. This is the first demonstration of RNAi following ingestion of dsRNA in all of the species tested, and the method offers promise of both higher throughput RNAi screens and the development of a new generation of species-specific insecticides.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                1 February 2012
                : 7
                : 2
                : e31347
                Affiliations
                [1]Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
                Centro de Pesquisas René Rachou, Brazil
                Author notes

                Conceived and designed the experiments: ITB. Performed the experiments: PK SSP. Analyzed the data: SSP PK. Contributed reagents/materials/analysis tools: ITB. Wrote the paper: ITB SSP PK.

                Article
                PONE-D-11-20086
                10.1371/journal.pone.0031347
                3270032
                22312445
                bbef71b3-fe0b-4ae4-9134-93fa2ec811ec
                Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 October 2011
                : 6 January 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                RNA
                Biotechnology
                Genetic Engineering
                Ecology
                Plant Ecology
                Molecular Cell Biology
                Gene Expression
                Zoology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article