20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global Gene Transcriptome Analysis in Vaccinated Cattle Revealed a Dominant Role of IL-22 for Protection against Bovine Tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bovine tuberculosis (bTB) is a chronic disease of cattle caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex group of bacteria. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. Identification of biomarkers in tuberculosis research remains elusive and the goal is to identify host correlates of protection. We hypothesized that by studying global gene expression we could identify in vitro predictors of protection that could help to facilitate vaccine development. Calves were vaccinated with BCG or with a heterologous BCG prime adenovirally vectored subunit boosting protocol. Protective efficacy was determined after M. bovis challenge. RNA was prepared from PPD-stimulated PBMC prepared from vaccinated-protected, vaccinated-unprotected and unvaccinated control cattle prior to M. bovis challenge and global gene expression determined by RNA-seq. 668 genes were differentially expressed in vaccinated-protected cattle compared with vaccinated-unprotected and unvaccinated control cattle. Cytokine-cytokine receptor interaction was the most significant pathway related to this dataset with IL-22 expression identified as the dominant surrogate of protection besides INF-γ. Finally, the expression of these candidate genes identified by RNA-seq was evaluated by RT-qPCR in an independent set of PBMC samples from BCG vaccinated and unvaccinated calves. This experiment confirmed the importance of IL-22 as predictor of vaccine efficacy.

          Author Summary

          Bovine tuberculosis (bTB) is a chronic disease of cattle caused by Mycobacterium bovis, a member of a complex group of pathogens that also includes the bacterium causing human tuberculosis, M. tuberculosis. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. In addition to the relevance for the veterinary field, cattle can also serve as useful pre-clinical model for the development of human vaccines. Identification of biomarkers in tuberculosis research remains elusive and the goal of this study was to identify host markers that allow the prediction of vaccine success. In this experiment, the outcome of vaccination was measured against relevant endpoints based on disease severity. Our results, generated using the state-of-the-art methodology of transcriptome sequencing defined a dominant role of the cytokine IL-22 for predicting vaccine success. We therefore identified a predictive biomarker that can be used in future experiments and also highlighted the role of T cells producing this cytokine in protective immunity.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The UCSC Genome Browser database: update 2011

          The University of California, Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online access to a database of genomic sequence and annotation data for a wide variety of organisms. The Browser also has many tools for visualizing, comparing and analyzing both publicly available and user-generated genomic data sets, aligning sequences and uploading user data. Among the features released this year are a gene search tool and annotation track drag-reorder functionality as well as support for BAM and BigWig/BigBed file formats. New display enhancements include overlay of multiple wiggle tracks through use of transparent coloring, options for displaying transformed wiggle data, a ‘mean+whiskers’ windowing function for display of wiggle data at high zoom levels, and more color schemes for microarray data. New data highlights include seven new genome assemblies, a Neandertal genome data portal, phenotype and disease association data, a human RNA editing track, and a zebrafish Conservation track. We also describe updates to existing tracks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets

            Summary: Experimental techniques that survey an entire genome demand flexible, highly interactive visualization tools that can display new data alongside foundation datasets, such as reference gene annotations. The Integrated Genome Browser (IGB) aims to meet this need. IGB is an open source, desktop graphical display tool implemented in Java that supports real-time zooming and panning through a genome; layout of genomic features and datasets in moveable, adjustable tiers; incremental or genome-scale data loading from remote web servers or local files; and dynamic manipulation of quantitative data via genome graphs. Availability: The application and source code are available from http://igb.bioviz.org and http://genoviz.sourceforge.net. Contact: aloraine@uncc.edu
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microarrays, deep sequencing and the true measure of the transcriptome

              Microarrays first made the analysis of the transcriptome possible, and have produced much important information. Today, however, researchers are increasingly turning to direct high-throughput sequencing - RNA-Seq - which has considerable advantages for examining transcriptome fine structure - for example in the detection of allele-specific expression and splice junctions. In this article, we discuss the relative merits of the two techniques, the inherent biases in each, and whether all of the vast body of array work needs to be revisited using the newer technology. We conclude that microarrays remain useful and accurate tools for measuring expression levels, and RNA-Seq complements and extends microarray measurements.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2012
                December 2012
                27 December 2012
                : 8
                : 12
                : e1003077
                Affiliations
                [1 ]Helmholtz Centre for Infection Research, Braunschweig, Germany
                [2 ]Lionex Diagnostics Ltd, Braunschweig, Germany
                [3 ]Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Weybridge, Addlestone, Surrey, United Kingdom
                [4 ]McMaster University, Hamilton, Ontario, Canada
                McGill University, Canada
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BVR MS HMV ZX. Performed the experiments: SB EAC BVR. Analyzed the data: SB EAC BVR HMV. Contributed reagents/materials/analysis tools: ZX. Wrote the paper: SB EAC BVR HMV.

                Article
                PPATHOGENS-D-12-01487
                10.1371/journal.ppat.1003077
                3531513
                23300440
                bbfbbc30-70e0-46c4-84c9-f6f1b6f7fd00
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 June 2012
                : 24 October 2012
                Page count
                Pages: 8
                Funding
                This work was funded by the Department for Environment, Food and Rural Affairs, United Kingdom. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Microbiology
                Medicine
                Infectious Diseases
                Veterinary Science
                Veterinary Diseases
                Veterinary Microbiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article