43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Keratin 6 negatively regulates Src kinase activity and the migratory potential of skin keratinocytes during wound repair.

          Abstract

          Injury to the epidermis triggers an elaborate homeostatic response resulting in tissue repair and recovery of the vital barrier function. The type II keratins 6a and 6b (K6a and K6b) are among the genes induced early on in wound-proximal keratinocytes and maintained during reepithelialization. Paradoxically, genetic ablation of K6a and K6b results in enhanced keratinocyte migration. In this paper, we show that this trait results from activation of Src kinase and key Src substrates that promote cell migration. Endogenous Src physically associated with keratin proteins in keratinocytes in a K6-dependent fashion. Purified Src bound K6-containing filaments via its SH2 domain in a novel phosphorylation-independent manner, resulting in kinase inhibition. K6 protein was enriched in the detergent-resistant membrane (DRM), a key site of Src inhibition, and DRMs from K6-null keratinocytes were depleted of both keratin and Src. We conclude that K6 negatively regulates Src kinase activity and the migratory potential of skin keratinocytes during wound repair. Our findings may also be important in related contexts such as cancer.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Oncogenic pathway signatures in human cancers as a guide to targeted therapies.

          The development of an oncogenic state is a complex process involving the accumulation of multiple independent mutations that lead to deregulation of cell signalling pathways central to the control of cell growth and cell fate. The ability to define cancer subtypes, recurrence of disease and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Various studies have also demonstrated the potential for using gene expression profiles for the analysis of oncogenic pathways. Here we show that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumours and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumour subtypes. Clustering tumours based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Predictions of pathway deregulation in cancer cell lines are also shown to predict the sensitivity to therapeutic agents that target components of the pathway. Linking pathway deregulation with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogenic pathway signatures to guide the use of targeted therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wound healing--aiming for perfect skin regeneration.

            P. Martin (1997)
            The healing of an adult skin wound is a complex process requiring the collaborative efforts of many different tissues and cell lineages. The behavior of each of the contributing cell types during the phases of proliferation, migration, matrix synthesis, and contraction, as well as the growth factor and matrix signals present at a wound site, are now roughly understood. Details of how these signals control wound cell activities are beginning to emerge, and studies of healing in embryos have begun to show how the normal adult repair process might be readjusted to make it less like patching up and more like regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation.

              Here, we have studied the activity of a novel protein-tyrosine kinase inhibitor that is selective for the Src family of tyrosine kinases. We have focused our study on the effects of this compound on T cell receptor-induced T cell activation, a process dependent on the activity of the Src kinases Lck and FynT. This compound is a nanomolar inhibitor of Lck and FynT, inhibits anti-CD3-induced protein-tyrosine kinase activity in T cells, demonstrates selectivity for Lck and FynT over ZAP-70, and preferentially inhibits T cell receptor-dependent anti-CD3-induced T cell proliferation over non-T cell receptor-dependent phorbol 12-myristate 13-acetate/interleukin-2 (IL-2)-induced T cell proliferation. Interestingly, this compound selectively inhibits the induction of the IL-2 gene, but not the granulocyte-macrophage colony-stimulating factor or IL-2 receptor genes. This compound offers a useful new tool for examining the role of the Lck and FynT tyrosine kinases versus ZAP-70 in T cell activation as well as the role of other Src family kinases in receptor function.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                30 April 2012
                : 197
                : 3
                : 381-389
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health , and [2 ]Department of Biological Chemistry and [3 ]Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21202
                Author notes
                Correspondence to Pierre A. Coulombe: coulombe@ 123456jhsph.edu
                Article
                201107078
                10.1083/jcb.201107078
                3341159
                22529101
                bbfe0e83-4ab2-4ecc-97a1-8d00a296c179
                © 2012 Rotty and Coulombe

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 13 July 2011
                : 27 March 2012
                Categories
                Research Articles
                Report

                Cell biology
                Cell biology

                Comments

                Comment on this article