9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Photochemistry of tetra- through hexa-brominated dioxins/furans, hydroxylated and native BDEs in different media

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to investigate (i) the behavior of native PBDEs during UV irradiation in different media, (ii) the possibility of their transformation into hydroxylated PBDEs in aqueous media, and (iii) the photochemistry/levels of brominated dioxins/furans formed from hydroxylated PBDEs. Debromination leading to the formation of a wide range of low-brominated congeners was the main path of photocatalyzed transformations of PBDEs. In organic solvents other than toluene, BDEs degraded in line with the pseudo first order kinetics (10–20 min half-life, depending on congener type and reaction medium). Irradiated BDE 209 congener behaved quite differently than lower-brominated BDEs: detectable amounts of various bromo-benzenes were found. That suggests that UV irradiation of BDE 209 leads to cleavage of the ether bound between the congener’s aromatic rings. Formation of bromophenyl bromo-methyl-biphenyl ethers or benzyl-bromophenoxybenzenes was observed in irradiated PBDE toluene-based solutions. The total concentration of OH-BDEs found in the reaction medium did not exceed 0.2 % of the initial precursor mass. Moreover, lower-brominated congeners detected in the reaction medium indicate subsequent debromination of OH-BDEs or hydro-debromination of the degraded congeners. Brominated dioxins and low levels of furans were observed in samples containing OH-BDEs. The total mass of dioxins did not exceed 3.5 % of the initial precursor mass.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Photolytic debromination of decabromodiphenyl ether (BDE 209).

          Polybrominated diphenyl ethers (PBDE) are commonly used flame retardants. During the past years, concerns have increased due to their occurrence in the environment and humans. In general, the concentrations of lower brominated (tetra-penta) diphenyl ethers in biota exceed those of the most heavily used product, decabromodiphenyl ether (DecaBDE). In this study, the photolytic debromination of DecaBDE has been investigated in order to study the formation of lower brominated diphenyl ethers. The time course of photolysis of DecaBDE was studied in toluene, on silica gel, sand, sediment and soil using artificial sunlight and on the natural matrices (sediment, soil, sand) also using natural sunlight. DecaBDE was photolytically labile and formed debromination products in all matrices studied. Nona- to tetraBDEs were formed as well as some PBDFs. The half-lives in toluene and on silica gel were less than 15 min, and half-lives on other matrices ranged between 40 and 200 h. No differences were seen in the debromination pattern of BDE congeners sequentially formed in the different matrices or under different light conditions. However, the debromination rates were strongly dependent on the matrix with longer half-lives on natural matrices than artificial ones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47).

            In this study, the endocrine-disrupting (ED) potency of metabolites from brominated flame retardants (BFRs) was determined. Metabolites were obtained by incubating single-parent compound BFRs with phenobarbital-induced rat liver microsomes. Incubation extracts were tested in seven in vitro bioassays for their potency to compete with thyroxine for binding to transthyretin (TTR), to inhibit estradiol-sulfotransferase (E2SULT), to interact with thyroid hormone-mediated cell proliferation, and to (in-)activate the androgen, progesterone, estrogen, or aryl hydrocarbon receptor. For most BFRs, TTR-binding potencies, and to a lesser extent E2SULT-inhibiting potencies, significantly increased after biotransformation. Microsomal incubation had less pronounced effects on other ED modes of action, due to low biotransformation efficiency and background activities determined in control incubations without BFRs. Moreover, cell-based bioassays suffered from cytotoxicity from metabolites of lower-brominated polybrominated diphenyl ethers. For the environmentally relevant 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), six hydroxylated metabolites were identified. Individual metabolites had TTR-binding and E2SULT-inhibiting potencies 160-1600 and 2.2-220 times higher than BDE-47 itself, whereas their combined potencies in a realistic mixture were well predicted via concentration addition. In combination with other environmentally relevant hydroxylated organohalogens acting on TTR-binding and E2SULT inhibition, internal exposure to BFR metabolites may significantly contribute to the overall risk of endocrine disruption.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydroxylation Increases the Neurotoxic Potential of BDE-47 to Affect Exocytosis and Calcium Homeostasis in PC12 Cells

              Background Oxidative metabolism, resulting in the formation of hydroxylated polybrominated diphenyl ether (PBDE) metabolites, may enhance the neurotoxic potential of brominated flame retardants. Objective Our objective was to investigate the effects of a hydroxylated metabolite of 2,2′,4,4′-tetra-bromodiphenyl ether (BDE-47; 6-OH-BDE-47) on changes in the intracellular Ca2+ concentration ([Ca2+] i ) and vesicular catecholamine release in PC12 cells. Methods We measured vesicular catecholamine release and [Ca2+] i using amperometry and imaging of the fluorescent Ca2+-sensitive dye Fura-2, respectively. Results Acute exposure of PC12 cells to 6-OH-BDE-47 (5 μM) induced vesicular catecholamine release. Catecholamine release coincided with a transient increase in [Ca2+] i , which was observed shortly after the onset of exposure to 6-OH-BDE-47 (120 μM). An additional late increase in [Ca2+] i was often observed at ≥1 μM 6-OH-BDE-47. The initial transient increase was absent in cells exposed to the parent compound BDE-47, whereas the late increase was observed only at 20 μM. Using the mitochondrial uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and thapsigargin to empty intracellular Ca2+ stores, we found that the initial increase originates from emptying of the endoplasmic reticulum and consequent influx of extracellular Ca2+, whereas the late increase originates primarily from mitochondria. Conclusion The hydroxylated metabolite 6-OH-BDE-47 is more potent in disturbing Ca2+ homeostasis and neurotransmitter release than the parent compound BDE-47. The present findings indicate that bioactivation by oxidative metabolism adds considerably to the neurotoxic potential of PBDEs. Additionally, based on the observed mechanism of action, a cumulative neurotoxic effect of PBDEs and ortho-substituted polychlorinated biphenyls on [Ca2+] i cannot be ruled out.
                Bookmark

                Author and article information

                Contributors
                roszko@ibprs.pl
                Journal
                Environ Sci Pollut Res Int
                Environ Sci Pollut Res Int
                Environmental Science and Pollution Research International
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0944-1344
                1614-7499
                11 August 2015
                11 August 2015
                2015
                : 22
                : 23
                : 18381-18393
                Affiliations
                Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
                Author notes

                Responsible editor: Roland Kallenborn

                Article
                5065
                10.1007/s11356-015-5065-7
                4669378
                26257117
                bbfe3921-02d7-417f-b13a-72aa64f2dc1f
                © The Author(s) 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 27 April 2015
                : 10 July 2015
                Categories
                Research Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2015

                General environmental science
                brominated dioxins,pbde,oh-bde,degradation,uv
                General environmental science
                brominated dioxins, pbde, oh-bde, degradation, uv

                Comments

                Comment on this article