10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The equivalent renal urea clearance: a new parameter to assess dialysis dose.

      Nephrology Dialysis Transplantation
      Adult, Aged, Computer Simulation, Female, Humans, Kidney, metabolism, Male, Middle Aged, Models, Biological, Renal Dialysis, Urea, pharmacokinetics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently the total (dialytic plus renal) urea clearance (KT) is computed as Kt/V plus the equivalent Kt/V (KT/VKR) provided by the renal urea clearance (KR). However, KT/VKR is computed with two different formulae, by Gotch and Keshaviah respectively. Moreover Teschan suggested a weekly KT, that is a multiple of Keshaviah's KT. We suggest the equivalent renal urea clearance (EKR), that kinetically quantifies the "time-averaged KT' and is independent of treatment type and schedule. Computer simulation has been used to analyse the relationship between EKR, as corrected for urea volume (EKRc), and Kt/V. Data from 66 HD patients, of whom eight were on once-weekly and 11 on twice-weekly HD, had been used to compare EKR with current KTs. For each individual schedule, the relationship between EKRc and Kt/V is linear and each ml/min of KR increases EKR by the same amount. For instance, for thrice-weekly HD patients, EKRc = 1 + 10 x Kt/V: so that, the critical Kt/V values of 0.8 and 1.0 correspond to EKRc values of 9.0 and 11 ml/min respectively, independently from treatment type and schedule. As to the clinical data, all once- and twice-weekly patients had a significant KR and excellent clinical status, but most of them had 9 < or = EKRc < 11 ml/min. After appropriate reconciliation of units, it has been found that kinetic KT was overestimated by about 10-12% (range, 2-23%) by Keshaviah and Teschan's KT, and by about 2-7% (range, 0.3-15%) by Gotch's KT. EKRc can account for KR and provide guidelines for all types of dialysis treatments: as far as urea is concerned, dialysis adequacy should require EKRc > or = 11 ml/min. However, it is likely that EKRc > or = 9 ml/min could suffice for patients with a substantial residual renal function.

          Related collections

          Author and article information

          Journal
          8856214
          10.1093/oxfordjournals.ndt.a027616

          Chemistry
          Adult,Aged,Computer Simulation,Female,Humans,Kidney,metabolism,Male,Middle Aged,Models, Biological,Renal Dialysis,Urea,pharmacokinetics

          Comments

          Comment on this article