7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insecticide resistance in Culex quinquefasciatus Say, 1823 in Brazil: a review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Culex quinquefasciatus is a successful invasive species broadly distributed in subtropical regions, including Brazil. It is an extremely annoying mosquito due to its nocturnal biting behavior, in high-density populations and it is a potential bridge between sylvatic arbovirus from birds to man in urban territories. Herein, we present a review concerning the methods of chemical control employed against Cx. quinquefasciatus in Brazil since the 1950’s and insecticide resistance data registered in the literature. As there is no specific national programme for Cx. quinquefasciatus control in Brazil, the selection of insecticide resistance is likely due in part to the well-designed chemical campaigns against Aedes aegypti and the elevated employment of insecticides by households and private companies. There are very few publications about insecticide resistance in Cx. quinquefasciatus from Brazil when compared to Ae. aegypti. Nevertheless, resistance to organophosphates, carbamate, DDT, pyrethroids and biolarvicides has been registered in Cx. quinquefasciatus populations from distinct localities of the country. Concerning physiological mechanisms selected for resistance, distinct patterns of esterases, as well as mutations in the acetylcholinesterase ( ace-1) and voltage-gated sodium channel ( Na V ) genes, have been identified in natural populations. Given environmental changes and socioeconomical issues in the cities, in recent years we have been experiencing an increase in the number of disease cases caused by arboviruses, which may involve Cx. quinquefasciatus participation as a key vector. It is urgent to better understand the efficiency and susceptibility status to insecticides, as well as the genetic background of known resistant mechanisms already present in Cx. quinquefasciatus populations for an effective and rapid chemical control when eventually required.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          "Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology.

          The transmission of vector-borne pathogens is greatly influenced by the ecology of their vector, which is in turn shaped by genetic ancestry, the environment, and the hosts that are fed on. One group of vectors, the mosquitoes in the Culex pipiens complex, play key roles in the transmission of a range of pathogens including several viruses such as West Nile and St. Louis encephalitis viruses, avian malaria (Plasmodium spp.), and filarial worms. The Cx. pipiens complex includes Culex pipiens pipiens with two forms, pipiens and molestus, Culex pipiens pallens, Culex quinquefasciatus, Culex australicus, and Culex globocoxitus. While several members of the complex have limited geographic distributions, Cx. pipienspipiens and Cx. quinquefasciatus are found in all known urban and sub-urban temperate and tropical regions, respectively, across the world, where they are often principal disease vectors. In addition, hybrids are common in areas of overlap. Although gaps in our knowledge still remain, the advent of genetic tools has greatly enhanced our understanding of the history of speciation, domestication, dispersal, and hybridization. We review the taxonomy, genetics, evolution, behavior, and ecology of members of the Cx. pipiens complex and their role in the transmission of medically important pathogens. The adaptation of Cx. pipiens complex mosquitoes to human-altered environments led to their global distribution through dispersal via humans and, combined with their mixed feeding patterns on birds and mammals (including humans), increased the transmission of several avian pathogens to humans. We highlight several unanswered questions that will increase our ability to control diseases transmitted by these mosquitoes. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging vectors in the Culex pipiens complex.

            In the Old World, some mosquitoes in the Culex pipiens complex are excellent enzootic vectors of West Nile virus, circulating the virus among birds, whereas others bite mainly humans and other mammals. Here we show that, in northern Europe, such forms differing in behavior and physiology have unique microsatellite fingerprints with no evidence of gene flow between them, as would be expected from distinct species. In the United States, however, hybrids between these forms are ubiquitous. Such hybrids between human-biters and bird-biters may be the bridge vectors contributing to the unprecedented severity and range of the West Nile virus epidemic in North America.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Comparative genomics: Insecticide resistance in mosquito vectors.

                Bookmark

                Author and article information

                Contributors
                ramonlopes2009@hotmail.com
                jbento@ioc.fiocruz.br
                ademirjr@ioc.fiocruz.br
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                18 December 2019
                18 December 2019
                2019
                : 12
                : 591
                Affiliations
                [1 ]ISNI 0000 0001 0723 0931, GRID grid.418068.3, Laboratório de Fisiologia e Controle de Artrópodes Vetores, , Instituto Oswaldo Cruz, Fiocruz, ; Rio de Janeiro, Brazil
                [2 ]ISNI 0000 0001 2294 473X, GRID grid.8536.8, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, , Universidade Federal do Rio de Janeiro, ; Rio de Janeiro, Brazil
                Article
                3850
                10.1186/s13071-019-3850-8
                6921570
                31852489
                bc1e1c5e-c41a-4fab-b6a5-56bcfc5134ba
                © The Author(s) 2019

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 31 July 2019
                : 10 December 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002322, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior;
                Award ID: 001
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003593, Conselho Nacional de Desenvolvimento Científico e Tecnológico;
                Award ID: 423002/2016-3
                Award Recipient :
                Funded by: Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (BR)
                Funded by: FundRef http://dx.doi.org/10.13039/501100004586, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro;
                Award ID: E-26/203.177/2016
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Parasitology
                vector control,southern house mosquito,insecticide resistance monitoring,urban vector,filarial vector

                Comments

                Comment on this article