44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer’s disease (AD) is clinically characterized by progressive memory loss, behavioral and learning dysfunction and cognitive deficits, such as alterations in social interactions. The major pathological features of AD are the formation of senile plaques and neurofibrillary tangles together with neuronal and vascular damage. The double transgenic mouse model of AD (2xTg-AD) with the APPswe/PS1dE9 mutations shows characteristics that are similar to those observed in AD patients, including social memory impairment, senile plaque formation and vascular deficits. Mesenchymal stem cells (MSCs), when transplanted into the brain, produce positive effects by reducing amyloid-beta (Aβ) deposition in transgenic amyloid precursor protein (APP)/presenilins1 (PS1) mice. Vascular endothelial growth factor (VEGF), exhibits neuroprotective effects against the excitotoxicity implicated in the AD neurodegeneration. The present study investigates the effects of MSCs overexpressing VEGF in hippocampal neovascularization, cognitive dysfunction and senile plaques present in 2xTg-AD transgenic mice. MSC were transfected with vascular endothelial growth factor cloned in uP vector under control of modified CMV promoter (uP-VEGF) vector, by electroporation and expanded at the 14th passage. 2xTg-AD animals at 6, 9 and 12 months old were transplanted with MSC-VEGF or MSC. The animals were tested for behavioral tasks to access locomotion, novelty exploration, learning and memory, and their brains were analyzed by immunohistochemistry (IHC) for vascularization and Aβ plaques. MSC-VEGF treatment favored the neovascularization and diminished senile plaques in hippocampal specific layers. Consequently, the treatment was able to provide behavioral benefits and reduce cognitive deficits by recovering the innate interest to novelty and counteracting memory deficits present in these AD transgenic animals. Therefore, this study has important therapeutic implications for the vascular damage in the neurodegeneration promoted by AD.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular endothelial growth factor is a secreted angiogenic mitogen.

          Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From marrow to brain: expression of neuronal phenotypes in adult mice.

            After intravascular delivery of genetically marked adult mouse bone marrow into lethally irradiated normal adult hosts, donor-derived cells expressing neuronal proteins (neuronal phenotypes) developed in the central nervous system. Flow cytometry revealed a population of donor-derived cells in the brain with characteristics distinct from bone marrow. Confocal microscopy of individual cells showed that hundreds of marrow-derived cells in brain sections expressed gene products typical of neurons (NeuN, 200-kilodalton neurofilament, and class III beta-tubulin) and were able to activate the transcription factor cAMP response element-binding protein (CREB). The generation of neuronal phenotypes in the adult brain 1 to 6 months after an adult bone marrow transplant demonstrates a remarkable plasticity of adult tissues with potential clinical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term memory underlying hippocampus-dependent social recognition in mice.

              The ability to learn and remember individuals is critical for the stability of social groups. Social recognition reflects the ability of mice to identify and remember conspecifics. Social recognition is assessed as a decrease in spontaneous investigation behaviors observed in a mouse reexposed to a familiar conspecific. Our results demonstrate that group-housed mice show social memory for a familiar juvenile when tested immediately, 30 min, 24 h, 3 days, and 7 days after a single 2-min-long interaction. Interestingly, chronic social isolation disrupts long-term, but not 30-min, social memory. Even a 24-h period of isolation disrupts long-term social memory, a result that may explain why previous investigators only observed short-term social memory in individually housed rodents. Although it has no obvious configural, relational, or spatial characteristics, here we show that social memory shares characteristics of other hippocampus-dependent memories. Ibotenic acid lesions of the hippocampus disrupt social recognition at 30 min, but not immediately after training. Furthermore, long-term, but not short-term social memory is dependent on protein synthesis and cyclic AMP responsive element binding protein (CREB) function. These results outline behavioral, systems, and molecular determinants of social recognition in mice, and they suggest that it is a powerful paradigm to investigate hippocampal learning and memory.
                Bookmark

                Author and article information

                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                07 March 2014
                2014
                : 6
                : 30
                Affiliations
                [1] 1Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo São Paulo, Brazil
                [2] 2Biofísica, Universidade Federal de São Paulo São Paulo, Brazil
                [3] 3Farmacologia, Universidade Federal de São Paulo São Paulo, Brazil
                Author notes

                Edited by: Jean Mariani, Universite Pierre et Marie Curie, France

                Reviewed by: José M. Delgado-García, University Pablo de Olavide, Seville, Spain; Shin Murakami, Touro University-California, USA

                *Correspondence: Beatriz M. Longo, Neurofisiologia, Depto. Fisiologia - UNIFESP- SP, R. Botucatu, 862 5 andar, V. Clementino – São Paulo- SP, Brazil e-mail: beatriz.longounifesp.br; beatrizlongo@ 123456gmail.com

                This article was submitted to the journal Frontiers in Aging Neuroscience.

                Article
                10.3389/fnagi.2014.00030
                3945612
                24639647
                bc2d798e-2a99-49ce-8b24-b3c662c2fe24
                Copyright © 2014 Garcia, Ornellas, Martin, Patti, Mello, Frussa-Filho, Han and Longo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 December 2013
                : 18 February 2014
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 48, Pages: 15, Words: 9551
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                mesenchymal stem cell,memory deficits,alzheimer’s disease,angiogenesis,amyloid plaques,vascular endothelial growth factor

                Comments

                Comment on this article