13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Frequency: The Overlooked Resistance Training Variable for Inducing Muscle Hypertrophy?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The principle of progressive overload must be adhered to for individuals to continually increase muscle size with resistance training. While the majority of trained individuals adhere to this principle by increasing the number of sets performed per exercise session, this does not appear to be an effective method for increasing muscle size once a given threshold is surpassed. Opposite the numerous studies examining differences in training loads and sets of exercise performed, a few studies have assessed the importance of training frequency with respect to muscle growth, none of which have tested very high frequencies of training (e.g., 7 days a week). The lack of studies examining such frequencies may be related to the American College of Sports Medicine recommendation that trained individuals use split routines allowing at least 48 h of rest between exercises that stress the same muscle groups. Given the attenuated muscle protein synthetic response to resistance exercise present in trained individuals, it can be hypothesized that increasing the training frequency would allow for more frequent elevations in muscle protein synthesis and more time spent in a positive net protein balance. We hypothesize that increasing the training frequency, as opposed to the training load or sets performed, may be a more appropriate strategy for trained individuals to progress a resistance exercise program aimed at increasing muscle size.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

          Background We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. Methodology/Principal Findings Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. Conclusions/Significance These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women.

            The purpose of this study was to investigate the time course of skeletal muscle adaptations resulting from high-intensity, upper and lower body dynamic resistance training (WT). A group of 17 men and 20 women were recruited for WT, and 6 men and 7 women served as a control group. The WT group performed six dynamic resistance exercises to fatigue using 8-12 repetition maximum (RM). The subjects trained 3 days a week for 12 weeks. One-RM knee extension (KE) and chest press (CP) exercises were measured at baseline and at weeks 2, 4, 6, 8, and 12 for the WT group. Muscle thickness (MTH) was measured by ultrasound at eight anatomical sites. One-RM CP and KE strength had increased significantly at week 4 for the female WT group. For the men in the WT group, 1 RM had increased significantly at week 2 for KE and at week 6 for CP. The mean relative increases in KE and CP strength were 19% and 19% for the men and 19% and 27% for the women, respectively, after 12 weeks of WT. Resistance training elicited a significant increase in MTH of the chest and triceps muscles at week 6 in both sexes. There were non-significant trends for increases in quadriceps MTH for the WT groups. The relative increases in upper and lower body MTH were 12%-21% and 7%-9% in the men and 10%-31% and 7%-8% in the women respectively, after 12 weeks of WT. These results would suggest that increases in MTH in the upper body are greater and occur earlier compared to the lower extremity, during the first 12 weeks of a total body WT programme. The time-course and proportions of the increase in strength and MTH were similar for both the men and the women.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men.

              We aimed to determine whether an exercise-mediated enhancement of muscle protein synthesis to feeding persisted 24 h after resistance exercise. We also determined the impact of different exercise intensities (90% or 30% maximal strength) or contraction volume (work-matched or to failure) on the response at 24 h of recovery. Fifteen men (21 ± 1 y, BMI = 24.1 ± 0.8 kg · m(-2)) received a primed, constant infusion of l-[ring-(13)C(6)]phenylalanine to measure muscle protein synthesis after protein feeding at rest (FED; 15 g whey protein) and 24 h after resistance exercise (EX-FED). Participants performed unilateral leg exercises: 1) 4 sets at 90% of maximal strength to failure (90FAIL); 2) 30% work-matched to 90FAIL (30WM); or 3) 30% to failure (30FAIL). Regardless of condition, rates of mixed muscle protein and sarcoplasmic protein synthesis were similarly stimulated at FED and EX-FED. In contrast, protein ingestion stimulated rates of myofibrillar protein synthesis above fasting rates by 0.016 ± 0.002%/h and the response was enhanced 24 h after resistance exercise, but only in the 90FAIL and 30FAIL conditions, by 0.038 ± 0.012 and 0.041 ± 0.010, respectively. Phosphorylation of protein kinase B on Ser473 was greater than FED at EX-FED only in 90FAIL, whereas phosphorylation of mammalian target of rapamycin on Ser2448 was significantly increased at EX-FED above FED only in the 30FAIL condition. Our results suggest that resistance exercise performed until failure confers a sensitizing effect on human skeletal muscle for at least 24 h that is specific to the myofibrillar protein fraction.
                Bookmark

                Author and article information

                Journal
                Sports Med
                Sports medicine (Auckland, N.Z.)
                Springer Nature
                1179-2035
                0112-1642
                May 2017
                : 47
                : 5
                Affiliations
                [1 ] Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
                [2 ] Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA. jploenne@olemiss.edu.
                Article
                10.1007/s40279-016-0640-8
                10.1007/s40279-016-0640-8
                27752983
                bc2f6877-0a89-494d-bc80-159d0f82f29a
                History

                Comments

                Comment on this article