6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Opposing plant community responses to warming with and without herbivores.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          If controls over primary productivity and plant community composition are mainly environmental, as opposed to biological, then global change may result in large-scale alterations in ecosystem structure and function. This view appears to be favored among investigations of plant biomass and community responses to experimental and observed warming. In far northern and arctic ecosystems, such studies predict increasing dominance of woody shrubs with future warming and emphasize the carbon (C)-sequestration potential and consequent atmospheric feedback potential of such responses. In contrast to previous studies, we incorporated natural herbivory by muskoxen and caribou into a 5-year experimental investigation of arctic plant community response to warming. In accordance with other studies, warming increased total community biomass by promoting growth of deciduous shrubs (dwarf birch and gray willow). However, muskoxen and caribou reduced total community biomass response, and responses of birch and willow, to warming by 19%, 46%, and 11%, respectively. Furthermore, under warming alone, the plant community shifted after 5 years away from graminoid-dominated toward dwarf birch-dominated. In contrast, where herbivores grazed, plant community composition on warmed plots did not differ from that on ambient plots after 5 years. These results highlight the potentially important and overlooked influences of vertebrate herbivores on plant community response to warming and emphasize that conservation and management of large herbivores may be an important component of mitigating ecosystem response to climate change.

          Related collections

          Author and article information

          Journal
          Proc Natl Acad Sci U S A
          Proceedings of the National Academy of Sciences of the United States of America
          Proceedings of the National Academy of Sciences
          1091-6490
          0027-8424
          Aug 26 2008
          : 105
          : 34
          Affiliations
          [1 ] Department of Biology, Penn State University, 208 Mueller Lab, University Park, PA 16802, USA. esp10@psu.edu
          Article
          0802421105
          10.1073/pnas.0802421105
          2527915
          18719116
          bc3c20b7-ab02-4a8b-9399-3c39cb157516
          History

          Comments

          Comment on this article