4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation

      , , , , ,
      Coordination Chemistry Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Combining theory and experiment in electrocatalysis: Insights into materials design

          Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. We conclude by extending this framework to emerging clean energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The chemistry and applications of metal-organic frameworks.

            Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Li-O2 and Li-S batteries with high energy storage.

              Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.
                Bookmark

                Author and article information

                Journal
                Coordination Chemistry Reviews
                Coordination Chemistry Reviews
                Elsevier BV
                00108545
                February 2021
                February 2021
                : 428
                : 213619
                Article
                10.1016/j.ccr.2020.213619
                bc4d8d52-6cbc-423a-ba8d-2d5c6c4c8557
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article