Blog
About

2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Modified Two-scale Microwave Scattering Model for a Dielectric Randomly Rough Surface(in English)

      Read this article at

      ScienceOpenPublisherDOAJ
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we present a Modified Two-Scale Microwave (MTSM) scattering model to describe the scattering coefficient of naturally rough surfaces. The surface roughness is assumed to be Gaussian in the proposed model so that the surface height z(x, y) can be split into large- and small-scale components by the wavelet packet transform according to electromagnetic wavelength. We used the Kirchhoff Model(KM) and Small Perturbation Method (SPM) to estimate the backscattering coefficient of large- and small-scale roughness, respectively. The tilting effect caused by the slope of large-scale roughness was corrected when calculating the contribution of backscattering to small-scale roughness. The backscattering coefficient of the MTSM comprised the total backscattering contributions of surfaces with both scales of roughness. The MTSM was tested and validated using the Advanced Integral Equation Model (AIEM) for dielectric randomly rough surfaces. The accuracy of the MTSM showed favorable agreement with AIEM, both when the incident angle was less than 30° (θi<30°) and when the surface roughness was small (ks=0.354).

          Related collections

          Author and article information

          Journal
          Journal of Radars
          Chinese Academy of Sciences
          01 October 2015
          : 4
          : 5
          : 560-570
          Affiliations
          [1 ] Chinese Academy of Surveying and Mapping
          Article
          97f98f66fceb4351bef886c9fac0fb28
          10.12000/JR15067

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Categories
          Technology (General)
          T1-995

          Comments

          Comment on this article